/* This is stub file for gapi.client.{{=it.name}} definition tests */ /* IMPORTANT. * This file was automatically generated by https://github.com/Bolisov/google-api-typings-generator. Please do not edit it manually. * In case of any problems please post issue to https://github.com/Bolisov/google-api-typings-generator **/ gapi.load('client', () => { /** now we can use gapi.client */ gapi.client.load('prediction', 'v1.6', () => { /** now we can use gapi.client.prediction */ /** don't forget to authenticate your client before sending any request to resources: */ /** declare client_id registered in Google Developers Console */ const client_id = '<>'; const scope = [ /** View and manage your data across Google Cloud Platform services */ 'https://www.googleapis.com/auth/cloud-platform', /** Manage your data and permissions in Google Cloud Storage */ 'https://www.googleapis.com/auth/devstorage.full_control', /** View your data in Google Cloud Storage */ 'https://www.googleapis.com/auth/devstorage.read_only', /** Manage your data in Google Cloud Storage */ 'https://www.googleapis.com/auth/devstorage.read_write', /** Manage your data in the Google Prediction API */ 'https://www.googleapis.com/auth/prediction', ]; const immediate = true; gapi.auth.authorize({ client_id, scope, immediate }, authResult => { if (authResult && !authResult.error) { /** handle succesfull authorization */ run(); } else { /** handle authorization error */ } }); run(); }); async function run() { /** Submit input and request an output against a hosted model. */ await gapi.client.hostedmodels.predict({ hostedModelName: "hostedModelName", project: "project", }); /** Get analysis of the model and the data the model was trained on. */ await gapi.client.trainedmodels.analyze({ id: "id", project: "project", }); /** Delete a trained model. */ await gapi.client.trainedmodels.delete({ id: "id", project: "project", }); /** Check training status of your model. */ await gapi.client.trainedmodels.get({ id: "id", project: "project", }); /** Train a Prediction API model. */ await gapi.client.trainedmodels.insert({ project: "project", }); /** List available models. */ await gapi.client.trainedmodels.list({ maxResults: 1, pageToken: "pageToken", project: "project", }); /** Submit model id and request a prediction. */ await gapi.client.trainedmodels.predict({ id: "id", project: "project", }); /** Add new data to a trained model. */ await gapi.client.trainedmodels.update({ id: "id", project: "project", }); } });