mirror of
https://github.com/gosticks/DefinitelyTyped.git
synced 2025-10-16 12:05:41 +00:00
4927 lines
195 KiB
TypeScript
4927 lines
195 KiB
TypeScript
// Type definitions for mathjs 6.0
|
||
// Project: https://mathjs.org/
|
||
// Definitions by: Ilya Shestakov <https://github.com/siavol>,
|
||
// Andy Patterson <https://github.com/andnp>,
|
||
// Brad Besserman <https://github.com/bradbesserman>,
|
||
// Pawel Krol <https://github.com/pawkrol>,
|
||
// Charlee Li <https://github.com/charlee>,
|
||
// Mark Wiemer <https://github.com/mark-wiemer>
|
||
// Definitions: https://github.com/DefinitelyTyped/DefinitelyTyped
|
||
// TypeScript Version: 2.2
|
||
|
||
import { Decimal } from "decimal.js";
|
||
|
||
declare const math: math.MathJsStatic;
|
||
export as namespace math;
|
||
export = math;
|
||
|
||
type NoLiteralType<T> =
|
||
T extends number ? number :
|
||
T extends string ? string :
|
||
T extends boolean ? boolean :
|
||
T;
|
||
declare namespace math {
|
||
type MathArray = number[] | number[][];
|
||
type MathType =
|
||
| number
|
||
| BigNumber
|
||
| Fraction
|
||
| Complex
|
||
| Unit
|
||
| MathArray
|
||
| Matrix;
|
||
type MathExpression = string | string[] | MathArray | Matrix;
|
||
|
||
type FactoryFunction<T> = (scope: any) => T;
|
||
|
||
// FactoryFunctionMap can be nested; all nested objects will be flattened
|
||
interface FactoryFunctionMap {
|
||
[key: string]: FactoryFunction<any> | FactoryFunctionMap;
|
||
}
|
||
|
||
type MathJsFunctionName = keyof MathJsStatic;
|
||
|
||
interface MathJsStatic extends FactoryDependencies {
|
||
e: number;
|
||
pi: number;
|
||
i: number;
|
||
Infinity: number;
|
||
LN2: number;
|
||
LN10: number;
|
||
LOG2E: number;
|
||
LOG10E: number;
|
||
NaN: number;
|
||
null: number;
|
||
phi: number;
|
||
SQRT1_2: number;
|
||
SQRT2: number;
|
||
tau: number;
|
||
|
||
uninitialized: any;
|
||
version: string;
|
||
|
||
expression: MathNode;
|
||
json: MathJsJson;
|
||
|
||
/*************************************************************************
|
||
* Core functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Set configuration options for math.js, and get current options. Will
|
||
* emit a ‘config’ event, with arguments (curr, prev, changes).
|
||
* @param options Available options: {number} epsilon Minimum relative
|
||
* difference between two compared values, used by all comparison
|
||
* functions. {string} matrix A string ‘Matrix’ (default) or ‘Array’.
|
||
* {string} number A string ‘number’ (default), ‘BigNumber’, or
|
||
* ‘Fraction’ {number} precision The number of significant digits for
|
||
* BigNumbers. Not applicable for Numbers. {string} parenthesis How to
|
||
* display parentheses in LaTeX and string output. {string} randomSeed
|
||
* Random seed for seeded pseudo random number generator. Set to null to
|
||
* randomly seed.
|
||
* @returns Returns the current configuration
|
||
*/
|
||
config: (options: ConfigOptions) => ConfigOptions;
|
||
/**
|
||
* Create a typed-function which checks the types of the arguments and
|
||
* can match them against multiple provided signatures. The
|
||
* typed-function automatically converts inputs in order to find a
|
||
* matching signature. Typed functions throw informative errors in case
|
||
* of wrong input arguments.
|
||
* @param name Optional name for the typed-function
|
||
* @param signatures Object with one or multiple function signatures
|
||
* @returns The created typed-function.
|
||
*/
|
||
typed: (name: string, signatures: Record<string, (...args: any[]) => any>) => ((...args: any[]) => any);
|
||
|
||
/*************************************************************************
|
||
* Construction functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Create a BigNumber, which can store numbers with arbitrary precision.
|
||
* When a matrix is provided, all elements will be converted to
|
||
* BigNumber.
|
||
* @param x Value for the big number, 0 by default.
|
||
* @returns The created bignumber
|
||
*/
|
||
bignumber(
|
||
x?:
|
||
| number
|
||
| string
|
||
| Fraction
|
||
| BigNumber
|
||
| MathArray
|
||
| Matrix
|
||
| boolean
|
||
| Fraction
|
||
| null
|
||
): BigNumber;
|
||
|
||
/**
|
||
* Create a boolean or convert a string or number to a boolean. In case
|
||
* of a number, true is returned for non-zero numbers, and false in case
|
||
* of zero. Strings can be 'true' or 'false', or can contain a number.
|
||
* When value is a matrix, all elements will be converted to boolean.
|
||
* @param x A value of any type
|
||
* @returns The boolean value
|
||
*/
|
||
boolean(
|
||
x: string | number | boolean | MathArray | Matrix | null
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/**
|
||
* Wrap any value in a chain, allowing to perform chained operations on
|
||
* the value. All methods available in the math.js library can be called
|
||
* upon the chain, and then will be evaluated with the value itself as
|
||
* first argument. The chain can be closed by executing chain.done(),
|
||
* which returns the final value. The chain has a number of special
|
||
* functions: done() Finalize the chain and return the chain's value.
|
||
* valueOf() The same as done() toString() Executes math.format() onto
|
||
* the chain's value, returning a string representation of the value.
|
||
* @param value A value of any type on which to start a chained
|
||
* operation.
|
||
* @returns The created chain
|
||
*/
|
||
chain(value?: any): MathJsChain;
|
||
|
||
/**
|
||
* Create a complex value or convert a value to a complex value.
|
||
* @param args Arguments specifying the real and imaginary part of the
|
||
* complex number
|
||
* @returns Returns a complex value
|
||
*/
|
||
complex(arg?: Complex | string | PolarCoordinates): Complex;
|
||
complex(arg?: MathArray | Matrix): MathArray | Matrix;
|
||
/**
|
||
* @param re Argument specifying the real part of the complex number
|
||
* @param im Argument specifying the imaginary part of the complex
|
||
* number
|
||
* @returns Returns a complex value
|
||
*/
|
||
complex(re: number, im: number): Complex;
|
||
|
||
/**
|
||
* Create a user-defined unit and register it with the Unit type.
|
||
* @param name The name of the new unit. Must be unique. Example: ‘knot’
|
||
* @param definition Definition of the unit in terms of existing units.
|
||
* For example, ‘0.514444444 m / s’.
|
||
* @param options (optional) An object containing any of the following
|
||
* properties:</br>- prefixes {string} “none”, “short”, “long”,
|
||
* “binary_short”, or “binary_long”. The default is “none”.</br>-
|
||
* aliases {Array} Array of strings. Example: [‘knots’, ‘kt’,
|
||
* ‘kts’]</br>- offset {Numeric} An offset to apply when converting from
|
||
* the unit. For example, the offset for celsius is 273.15. Default is
|
||
* 0.
|
||
* @returns The new unit
|
||
*/
|
||
createUnit(
|
||
name: string,
|
||
definition?: string | UnitDefinition,
|
||
options?: CreateUnitOptions
|
||
): Unit;
|
||
/**
|
||
* Create a user-defined unit and register it with the Unit type.
|
||
* @param units Definition of the unit
|
||
* @param options
|
||
* @returns The new unit
|
||
*/
|
||
createUnit(
|
||
units: Record<string, string | UnitDefinition>,
|
||
options?: CreateUnitOptions
|
||
): Unit;
|
||
|
||
/**
|
||
* Create a fraction convert a value to a fraction.
|
||
* @param args Arguments specifying the numerator and denominator of the
|
||
* fraction
|
||
* @returns Returns a fraction
|
||
*/
|
||
fraction(
|
||
args: Fraction | MathArray | Matrix
|
||
): Fraction | MathArray | Matrix;
|
||
/**
|
||
* @param numerator Argument specifying the numerator of the fraction
|
||
* @param denominator Argument specifying the denominator of the
|
||
* fraction
|
||
* @returns Returns a fraction
|
||
*/
|
||
fraction(
|
||
numerator: number | string | MathArray | Matrix,
|
||
denominator?: number | string | MathArray | Matrix
|
||
): Fraction | MathArray | Matrix;
|
||
|
||
/**
|
||
* Create an index. An Index can store ranges having start, step, and
|
||
* end for multiple dimensions. Matrix.get, Matrix.set, and math.subset
|
||
* accept an Index as input.
|
||
* @param ranges Zero or more ranges or numbers.
|
||
* @returns Returns the created index
|
||
*/
|
||
index(...ranges: any[]): Index;
|
||
|
||
/**
|
||
* Create a Matrix. The function creates a new math.type.Matrix object
|
||
* from an Array. A Matrix has utility functions to manipulate the data
|
||
* in the matrix, like getting the size and getting or setting values in
|
||
* the matrix. Supported storage formats are 'dense' and 'sparse'.
|
||
* @param format The Matrix storage format
|
||
* @returns The created Matrix
|
||
*/
|
||
matrix(format?: "sparse" | "dense"): Matrix;
|
||
/**
|
||
* @param data A multi dimensional array
|
||
* @param format The Matrix storage format
|
||
* @param dataType The Matrix data type
|
||
* @returns The created Matrix
|
||
*/
|
||
matrix(
|
||
data: MathArray | Matrix,
|
||
format?: "sparse" | "dense",
|
||
dataType?: string
|
||
): Matrix;
|
||
|
||
/**
|
||
* Create a number or convert a string, boolean, or unit to a number.
|
||
* When value is a matrix, all elements will be converted to number.
|
||
* @param value Value to be converted
|
||
* @returns The created number
|
||
*/
|
||
number(
|
||
value?:
|
||
| string
|
||
| number
|
||
| BigNumber
|
||
| Fraction
|
||
| boolean
|
||
| MathArray
|
||
| Matrix
|
||
| Unit
|
||
| null
|
||
): number | MathArray | Matrix;
|
||
/**
|
||
* @param value Value to be converted
|
||
* @param valuelessUnit A valueless unit, used to convert a unit to a
|
||
* number
|
||
* @returns The created number
|
||
*/
|
||
number(unit: Unit, valuelessUnit: Unit | string): number;
|
||
|
||
/**
|
||
* Create a Sparse Matrix. The function creates a new math.type.Matrix
|
||
* object from an Array. A Matrix has utility functions to manipulate
|
||
* the data in the matrix, like getting the size and getting or setting
|
||
* values in the matrix.
|
||
* @param data A two dimensional array
|
||
* @param dataType Sparse Matrix data type
|
||
* @returns The created matrix
|
||
*/
|
||
sparse(data?: MathArray | Matrix, dataType?: string): Matrix;
|
||
|
||
/**
|
||
* Split a unit in an array of units whose sum is equal to the original
|
||
* unit.
|
||
* @param unit A unit to be split
|
||
* @param parts An array of strings or valueless units
|
||
* @returns An array of units
|
||
*/
|
||
splitUnit(unit: Unit, parts: Unit[]): Unit[];
|
||
|
||
/**
|
||
* Create a string or convert any object into a string. Elements of
|
||
* Arrays and Matrices are processed element wise.
|
||
* @param value A value to convert to a string
|
||
* @returns The created string
|
||
*/
|
||
string(
|
||
value: MathType | null
|
||
): string | MathArray | Matrix;
|
||
|
||
/**
|
||
* Create a unit. Depending on the passed arguments, the function will
|
||
* create and return a new math.type.Unit object. When a matrix is
|
||
* provided, all elements will be converted to units.
|
||
* @param unit The unit to be created
|
||
* @returns The created unit
|
||
*/
|
||
unit(unit: string): Unit;
|
||
/**
|
||
* @param value The value of the unit to be created
|
||
* @param unit The unit to be created
|
||
* @returns The created unit
|
||
*/
|
||
unit(value: number | MathArray | Matrix, unit: string): Unit;
|
||
|
||
/*************************************************************************
|
||
* Expression functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Parse and compile an expression. Returns a an object with a function
|
||
* evaluate([scope]) to evaluate the compiled expression.
|
||
* @param expr The expression to be compiled
|
||
* @returns An object with the compiled expression
|
||
*/
|
||
compile(expr: MathExpression): EvalFunction;
|
||
/**
|
||
* @param exprs The expressions to be compiled
|
||
* @returns An array of objects with the compiled expressions
|
||
*/
|
||
compile(exprs: MathExpression[]): EvalFunction[];
|
||
|
||
/**
|
||
* Evaluate an expression.
|
||
* @param expr The expression to be evaluated
|
||
* @param scope Scope to read/write variables
|
||
* @returns The result of the expression
|
||
*/
|
||
evaluate(
|
||
expr: MathExpression | MathExpression[] | Matrix,
|
||
scope?: object
|
||
): any;
|
||
|
||
/**
|
||
* Retrieve help on a function or data type. Help files are retrieved
|
||
* from the documentation in math.expression.docs.
|
||
* @param search A function or function name for which to get help
|
||
* @returns A help object
|
||
*/
|
||
help(search: () => any): Help;
|
||
|
||
/**
|
||
* Parse an expression. Returns a node tree, which can be evaluated by
|
||
* invoking node.evaluate();
|
||
* @param expr Expression to be parsed
|
||
* @param options Available options: nodes - a set of custome nodes
|
||
* @returns A node
|
||
*/
|
||
parse(expr: MathExpression, options?: any): MathNode;
|
||
/**
|
||
* @param exprs Expressions to be parsed
|
||
* @param options Available options: nodes - a set of custome nodes
|
||
* @returns An arry of nodes
|
||
*/
|
||
parse(exprs: MathExpression[], options?: any): MathNode[];
|
||
|
||
/**
|
||
* Create a parser. The function creates a new math.expression.Parser
|
||
* object.
|
||
* @returns A Parser object
|
||
*/
|
||
parser(): Parser;
|
||
|
||
/*************************************************************************
|
||
* Algebra functions
|
||
************************************************************************/
|
||
/**
|
||
* @param expr The expression to differentiate
|
||
* @param variable The variable over which to differentiate
|
||
* @param options There is one option available, simplify, which is true
|
||
* by default. When false, output will not be simplified.
|
||
* @returns The derivative of expr
|
||
*/
|
||
derivative(
|
||
expr: MathNode | string,
|
||
variable: MathNode | string,
|
||
options?: {simplify: boolean}
|
||
): MathNode;
|
||
|
||
/**
|
||
* Solves the linear equation system by forwards substitution. Matrix
|
||
* must be a lower triangular matrix.
|
||
* @param L A N x N matrix or array (L)
|
||
* @param b A column vector with the b values
|
||
* @returns A column vector with the linear system solution (x)
|
||
*/
|
||
lsolve(
|
||
L: Matrix | MathArray,
|
||
b: Matrix | MathArray
|
||
): Matrix | MathArray;
|
||
|
||
/**
|
||
* Calculate the Matrix LU decomposition with partial pivoting. Matrix A
|
||
* is decomposed in two matrices (L, U) and a row permutation vector p
|
||
* where A[p,:] = L * U
|
||
* @param A A two dimensional matrix or array for which to get the LUP
|
||
* decomposition.
|
||
* @returns The lower triangular matrix, the upper triangular matrix and
|
||
* the permutation matrix.
|
||
*/
|
||
lup(
|
||
A?: Matrix | MathArray
|
||
): { L: MathArray | Matrix; U: MathArray | Matrix; P: number[] };
|
||
|
||
/**
|
||
* Solves the linear system A * x = b where A is an [n x n] matrix and b
|
||
* is a [n] column vector.
|
||
* @param A Invertible Matrix or the Matrix LU decomposition
|
||
* @param b Column Vector
|
||
* @param order The Symbolic Ordering and Analysis order, see slu for
|
||
* details. Matrix must be a SparseMatrix
|
||
* @param threshold Partial pivoting threshold (1 for partial pivoting),
|
||
* see slu for details. Matrix must be a SparseMatrix.
|
||
* @returns Column vector with the solution to the linear system A * x =
|
||
* b
|
||
*/
|
||
lusolve(
|
||
A: Matrix | MathArray | number,
|
||
b: Matrix | MathArray,
|
||
order?: number,
|
||
threshold?: number
|
||
): Matrix | MathArray;
|
||
|
||
/**
|
||
* Calculate the Matrix QR decomposition. Matrix A is decomposed in two
|
||
* matrices (Q, R) where Q is an orthogonal matrix and R is an upper
|
||
* triangular matrix.
|
||
* @param A A two dimensional matrix or array for which to get the QR
|
||
* decomposition.
|
||
* @returns Q: the orthogonal matrix and R: the upper triangular matrix
|
||
*/
|
||
qr(
|
||
A: Matrix | MathArray
|
||
): { Q: MathArray | Matrix; R: MathArray | Matrix };
|
||
|
||
/**
|
||
* Transform a rationalizable expression in a rational fraction. If
|
||
* rational fraction is one variable polynomial then converts the
|
||
* numerator and denominator in canonical form, with decreasing
|
||
* exponents, returning the coefficients of numerator.
|
||
* @param expr The expression to check if is a polynomial expression
|
||
* @param optional scope of expression or true for already evaluated
|
||
* rational expression at input
|
||
* @param detailed optional True if return an object, false if return
|
||
* expression node (default)
|
||
* @returns The rational polynomial of expr
|
||
*/
|
||
rationalize(expr: MathNode | string, optional?: object | boolean, detailed?: true): { expression: MathNode | string, variables: string[], coefficients: MathType[] };
|
||
rationalize(expr: MathNode | string, optional?: object | boolean, detailed?: false): MathNode;
|
||
|
||
/**
|
||
* Simplify an expression tree.
|
||
* @param expr The expression to be simplified
|
||
* @param rules A list of rules are applied to an expression, repeating
|
||
* over the list until no further changes are made. It’s possible to
|
||
* pass a custom set of rules to the function as second argument. A rule
|
||
* can be specified as an object, string, or function.
|
||
* @param scope Scope to variables
|
||
* @returns Returns the simplified form of expr
|
||
*/
|
||
simplify(
|
||
expr: MathNode | string,
|
||
rules?: Array<({ l: string; r: string } | string | ((node: MathNode) => MathNode))>,
|
||
scope?: object
|
||
): MathNode;
|
||
|
||
/**
|
||
* Calculate the Sparse Matrix LU decomposition with full pivoting.
|
||
* Sparse Matrix A is decomposed in two matrices (L, U) and two
|
||
* permutation vectors (pinv, q) where P * A * Q = L * U
|
||
* @param A A two dimensional sparse matrix for which to get the LU
|
||
* decomposition.
|
||
* @param order The Symbolic Ordering and Analysis order: 0 - Natural
|
||
* ordering, no permutation vector q is returned 1 - Matrix must be
|
||
* square, symbolic ordering and analisis is performed on M = A + A' 2 -
|
||
* Symbolic ordering and analysis is performed on M = A' * A. Dense
|
||
* columns from A' are dropped, A recreated from A'. This is appropriate
|
||
* for LU factorization of non-symmetric matrices. 3 - Symbolic ordering
|
||
* and analysis is performed on M = A' * A. This is best used for LU
|
||
* factorization is matrix M has no dense rows. A dense row is a row
|
||
* with more than 10*sqr(columns) entries.
|
||
* @param threshold Partial pivoting threshold (1 for partial pivoting)
|
||
* @returns The lower triangular matrix, the upper triangular matrix and
|
||
* the permutation vectors.
|
||
*/
|
||
slu(A: Matrix, order: number, threshold: number): object;
|
||
|
||
/**
|
||
* Solves the linear equation system by backward substitution. Matrix
|
||
* must be an upper triangular matrix. U * x = b
|
||
* @param U A N x N matrix or array (U)
|
||
* @param b A column vector with the b values
|
||
* @returns A column vector with the linear system solution (x)
|
||
*/
|
||
usolve(
|
||
U: Matrix | MathArray,
|
||
b: Matrix | MathArray
|
||
): Matrix | MathArray;
|
||
|
||
/*************************************************************************
|
||
* Arithmetic functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Calculate the absolute value of a number. For matrices, the function
|
||
* is evaluated element wise.
|
||
* @param x A number or matrix for which to get the absolute value
|
||
* @returns Absolute value of x
|
||
*/
|
||
abs(x: number): number;
|
||
abs(x: BigNumber): BigNumber;
|
||
abs(x: Fraction): Fraction;
|
||
abs(x: Complex): Complex;
|
||
abs(x: MathArray): MathArray;
|
||
abs(x: Matrix): Matrix;
|
||
abs(x: Unit): Unit;
|
||
|
||
/**
|
||
* Add two values, x + y. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x First value to add
|
||
* @param y Second value to add
|
||
* @returns Sum of x and y
|
||
*/
|
||
add(x: MathType, y: MathType): MathType;
|
||
|
||
/**
|
||
* Calculate the cubic root of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Value for which to calculate the cubic root.
|
||
* @param allRoots Optional, false by default. Only applicable when x is
|
||
* a number or complex number. If true, all complex roots are returned,
|
||
* if false (default) the principal root is returned.
|
||
* @returns Returns the cubic root of x
|
||
*/
|
||
cbrt(x: number, allRoots?: boolean): number;
|
||
cbrt(x: BigNumber, allRoots?: boolean): BigNumber;
|
||
cbrt(x: Fraction, allRoots?: boolean): Fraction;
|
||
cbrt(x: Complex, allRoots?: boolean): Complex;
|
||
cbrt(x: MathArray, allRoots?: boolean): MathArray;
|
||
cbrt(x: Matrix, allRoots?: boolean): Matrix;
|
||
cbrt(x: Unit, allRoots?: boolean): Unit;
|
||
|
||
/**
|
||
* Round a value towards plus infinity If x is complex, both real and
|
||
* imaginary part are rounded towards plus infinity. For matrices, the
|
||
* function is evaluated element wise.
|
||
* @param x Number to be rounded
|
||
* @returns Rounded value
|
||
*/
|
||
ceil(x: number): number;
|
||
ceil(x: BigNumber): BigNumber;
|
||
ceil(x: Fraction): Fraction;
|
||
ceil(x: Complex): Complex;
|
||
ceil(x: MathArray): MathArray;
|
||
ceil(x: Matrix): Matrix;
|
||
ceil(x: Unit): Unit;
|
||
|
||
/**
|
||
* Compute the cube of a value, x * x * x. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Number for which to calculate the cube
|
||
* @returns Cube of x
|
||
*/
|
||
cube(x: number): number;
|
||
cube(x: BigNumber): BigNumber;
|
||
cube(x: Fraction): Fraction;
|
||
cube(x: Complex): Complex;
|
||
cube(x: MathArray): MathArray;
|
||
cube(x: Matrix): Matrix;
|
||
cube(x: Unit): Unit;
|
||
|
||
/**
|
||
* Divide two values, x / y. To divide matrices, x is multiplied with
|
||
* the inverse of y: x * inv(y).
|
||
* @param x Numerator
|
||
* @param y Denominator
|
||
* @returns Quotient, x / y
|
||
*/
|
||
divide(x: Unit, y: Unit): Unit;
|
||
divide(x: number, y: number): number;
|
||
divide(x: MathType, y: MathType): MathType;
|
||
|
||
/**
|
||
* Divide two matrices element wise. The function accepts both matrices
|
||
* and scalar values.
|
||
* @param x Numerator
|
||
* @param y Denominator
|
||
* @returns Quotient, x ./ y
|
||
*/
|
||
dotDivide(x: MathType, y: MathType): MathType;
|
||
|
||
/**
|
||
* Multiply two matrices element wise. The function accepts both
|
||
* matrices and scalar values.
|
||
* @param x Left hand value
|
||
* @param y Right hand value
|
||
* @returns Multiplication of x and y
|
||
*/
|
||
dotMultiply(x: MathType, y: MathType): MathType;
|
||
|
||
/**
|
||
* Calculates the power of x to y element wise.
|
||
* @param x The base
|
||
* @param y The exponent
|
||
* @returns The value of x to the power y
|
||
*/
|
||
dotPow(x: MathType, y: MathType): MathType;
|
||
|
||
/**
|
||
* Calculate the exponent of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x A number or matrix to exponentiate
|
||
* @returns Exponent of x
|
||
*/
|
||
exp(x: number): number;
|
||
exp(x: BigNumber): BigNumber;
|
||
exp(x: Complex): Complex;
|
||
exp(x: MathArray): MathArray;
|
||
exp(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the value of subtracting 1 from the exponential value. For
|
||
* matrices, the function is evaluated element wise.
|
||
* @param x A number or matrix to apply expm1
|
||
* @returns Exponent of x
|
||
*/
|
||
expm1(x: number): number;
|
||
expm1(x: BigNumber): BigNumber;
|
||
expm1(x: Complex): Complex;
|
||
expm1(x: MathArray): MathArray;
|
||
expm1(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Round a value towards zero. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x Number to be rounded
|
||
* @returns Rounded value
|
||
*/
|
||
fix(x: number): number;
|
||
fix(x: BigNumber): BigNumber;
|
||
fix(x: Fraction): Fraction;
|
||
fix(x: Complex): Complex;
|
||
fix(x: MathArray): MathArray;
|
||
fix(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Round a value towards minus infinity. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param Number to be rounded
|
||
* @returns Rounded value
|
||
*/
|
||
floor(x: number): number;
|
||
floor(x: BigNumber): BigNumber;
|
||
floor(x: Fraction): Fraction;
|
||
floor(x: Complex): Complex;
|
||
floor(x: MathArray): MathArray;
|
||
floor(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the greatest common divisor for two or more values or
|
||
* arrays. For matrices, the function is evaluated element wise.
|
||
* @param args Two or more integer numbers
|
||
* @returns The greatest common divisor
|
||
*/
|
||
gcd(...args: number[]): number;
|
||
gcd(...args: BigNumber[]): BigNumber;
|
||
gcd(...args: Fraction[]): Fraction;
|
||
gcd(...args: MathArray[]): MathArray;
|
||
gcd(...args: Matrix[]): Matrix;
|
||
|
||
/**
|
||
* Calculate the hypotenusa of a list with values. The hypotenusa is
|
||
* defined as: hypot(a, b, c, ...) = sqrt(a^2 + b^2 + c^2 + ...) For
|
||
* matrix input, the hypotenusa is calculated for all values in the
|
||
* matrix.
|
||
* @param args A list with numeric values or an Array or Matrix. Matrix
|
||
* and Array input is flattened and returns a single number for the
|
||
* whole matrix.
|
||
* @returns Returns the hypothenuse of the input values.
|
||
*/
|
||
hypot(...args: number[]): number;
|
||
hypot(...args: BigNumber[]): BigNumber;
|
||
|
||
/**
|
||
* Calculate the least common multiple for two or more values or arrays.
|
||
* lcm is defined as: lcm(a, b) = abs(a * b) / gcd(a, b) For matrices,
|
||
* the function is evaluated element wise.
|
||
* @param a An integer number
|
||
* @param b An integer number
|
||
* @returns The least common multiple
|
||
*/
|
||
lcm(a: number, b: number): number;
|
||
lcm(a: BigNumber, b: BigNumber): BigNumber;
|
||
lcm(a: MathArray, b: MathArray): MathArray;
|
||
lcm(a: Matrix, b: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the logarithm of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Value for which to calculate the logarithm.
|
||
* @param base Optional base for the logarithm. If not provided, the
|
||
* natural logarithm of x is calculated. Default value: e.
|
||
* @returns Returns the logarithm of x
|
||
*/
|
||
log<T extends number | BigNumber | Complex | MathArray | Matrix>(
|
||
x: T,
|
||
base?: number | BigNumber | Complex
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Calculate the 10-base of a value. This is the same as calculating
|
||
* log(x, 10). For matrices, the function is evaluated element wise.
|
||
* @param x Value for which to calculate the logarithm.
|
||
* @returns Returns the 10-base logarithm of x
|
||
*/
|
||
log10(x: number): number;
|
||
log10(x: BigNumber): BigNumber;
|
||
log10(x: Complex): Complex;
|
||
log10(x: MathArray): MathArray;
|
||
log10(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the logarithm of a value+1. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Value for which to calculate the logarithm.
|
||
* @returns Returns the logarithm of x+1
|
||
*/
|
||
log1p(x: number, base?: number | BigNumber | Complex): number;
|
||
log1p(x: BigNumber, base?: number | BigNumber | Complex): BigNumber;
|
||
log1p(x: Complex, base?: number | BigNumber | Complex): Complex;
|
||
log1p(x: MathArray, base?: number | BigNumber | Complex): MathArray;
|
||
log1p(x: Matrix, base?: number | BigNumber | Complex): Matrix;
|
||
|
||
/**
|
||
* Calculate the 2-base of a value. This is the same as calculating
|
||
* log(x, 2). For matrices, the function is evaluated element wise.
|
||
* @param x Value for which to calculate the logarithm.
|
||
* @returns Returns the 2-base logarithm of x
|
||
*/
|
||
log2(x: number): number;
|
||
log2(x: BigNumber): BigNumber;
|
||
log2(x: Complex): Complex;
|
||
log2(x: MathArray): MathArray;
|
||
log2(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculates the modulus, the remainder of an integer division. For
|
||
* matrices, the function is evaluated element wise. The modulus is
|
||
* defined as: x - y * floor(x / y)
|
||
* @see http://en.wikipedia.org/wiki/Modulo_operation.
|
||
* @param x Dividend
|
||
* @param y Divisor
|
||
* @returns Returns the remainder of x divided by y
|
||
*/
|
||
mod<T extends number | BigNumber | Fraction | MathArray | Matrix>(
|
||
x: T,
|
||
y: number | BigNumber | Fraction | MathArray | Matrix
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Multiply two values, x * y. The result is squeezed. For matrices, the
|
||
* matrix product is calculated.
|
||
* @param x The first value to multiply
|
||
* @param y The second value to multiply
|
||
* @returns Multiplication of x and y
|
||
*/
|
||
multiply<T extends Matrix | MathArray>(x: T, y: MathType): T;
|
||
multiply(x: Unit, y: Unit): Unit;
|
||
multiply(x: number, y: number): number;
|
||
multiply(x: MathType, y: MathType): MathType;
|
||
|
||
/**
|
||
* Calculate the norm of a number, vector or matrix. The second
|
||
* parameter p is optional. If not provided, it defaults to 2.
|
||
* @param x Value for which to calculate the norm
|
||
* @param p Vector space. Supported numbers include Infinity and
|
||
* -Infinity. Supported strings are: 'inf', '-inf', and 'fro' (The
|
||
* Frobenius norm) Default value: 2.
|
||
* @returns the p-norm
|
||
*/
|
||
norm(
|
||
x: number | BigNumber | Complex | MathArray | Matrix,
|
||
p?: number | BigNumber | string
|
||
): number | BigNumber;
|
||
|
||
/**
|
||
* Calculate the nth root of a value. The principal nth root of a
|
||
* positive real number A, is the positive real solution of the equation
|
||
* x^root = A For matrices, the function is evaluated element wise.
|
||
* @param a Value for which to calculate the nth root
|
||
* @param root The root. Default value: 2.
|
||
* @return The nth root of a
|
||
*/
|
||
nthRoot(
|
||
a: number | BigNumber | MathArray | Matrix | Complex,
|
||
root?: number | BigNumber
|
||
): number | Complex | MathArray | Matrix;
|
||
|
||
/**
|
||
* Calculates the power of x to y, x ^ y. Matrix exponentiation is
|
||
* supported for square matrices x, and positive integer exponents y.
|
||
* @param x The base
|
||
* @param y The exponent
|
||
* @returns x to the power y
|
||
*/
|
||
pow(x: MathType, y: number | BigNumber | Complex): MathType;
|
||
|
||
/**
|
||
* Round a value towards the nearest integer. For matrices, the function
|
||
* is evaluated element wise.
|
||
* @param x Number to be rounded
|
||
* @param n Number of decimals Default value: 0.
|
||
* @returns Rounded value of x
|
||
*/
|
||
round<T extends number | BigNumber | Fraction | Complex | MathArray | Matrix>(
|
||
x: T,
|
||
n?: number | BigNumber | MathArray
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Compute the sign of a value. The sign of a value x is: 1 when x > 1
|
||
* -1 when x < 0 0 when x == 0 For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x The number for which to determine the sign
|
||
* @returns The sign of x
|
||
*/
|
||
sign(x: number): number;
|
||
sign(x: BigNumber): BigNumber;
|
||
sign(x: Fraction): Fraction;
|
||
sign(x: Complex): Complex;
|
||
sign(x: MathArray): MathArray;
|
||
sign(x: Matrix): Matrix;
|
||
sign(x: Unit): Unit;
|
||
|
||
/**
|
||
* Calculate the square root of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Value for which to calculate the square root
|
||
* @returns Returns the square root of x
|
||
*/
|
||
sqrt(x: number): number;
|
||
sqrt(x: BigNumber): BigNumber;
|
||
sqrt(x: Complex): Complex;
|
||
sqrt(x: MathArray): MathArray;
|
||
sqrt(x: Matrix): Matrix;
|
||
sqrt(x: Unit): Unit;
|
||
|
||
/**
|
||
* Compute the square of a value, x * x. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Number for which to calculate the square
|
||
* @returns Squared value
|
||
*/
|
||
square(x: number): number;
|
||
square(x: BigNumber): BigNumber;
|
||
square(x: Fraction): Fraction;
|
||
square(x: Complex): Complex;
|
||
square(x: MathArray): MathArray;
|
||
square(x: Matrix): Matrix;
|
||
square(x: Unit): Unit;
|
||
|
||
/**
|
||
* Subtract two values, x - y. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x Initial value
|
||
* @param y Value to subtract from x
|
||
* @returns Subtraction of x and y
|
||
*/
|
||
subtract(x: MathType, y: MathType): MathType;
|
||
|
||
/**
|
||
* Inverse the sign of a value, apply a unary minus operation. For
|
||
* matrices, the function is evaluated element wise. Boolean values and
|
||
* strings will be converted to a number. For complex numbers, both real
|
||
* and complex value are inverted.
|
||
* @param x Number to be inverted
|
||
* @returns Retursn the value with inverted sign
|
||
*/
|
||
unaryMinus(x: number): number;
|
||
unaryMinus(x: BigNumber): BigNumber;
|
||
unaryMinus(x: Fraction): Fraction;
|
||
unaryMinus(x: Complex): Complex;
|
||
unaryMinus(x: MathArray): MathArray;
|
||
unaryMinus(x: Matrix): Matrix;
|
||
unaryMinus(x: Unit): Unit;
|
||
|
||
/**
|
||
* Unary plus operation. Boolean values and strings will be converted to
|
||
* a number, numeric values will be returned as is. For matrices, the
|
||
* function is evaluated element wise.
|
||
* @param x Input value
|
||
* @returns Returns the input value when numeric, converts to a number
|
||
* when input is non-numeric.
|
||
*/
|
||
unaryPlus(x: number): number;
|
||
unaryPlus(x: BigNumber): BigNumber;
|
||
unaryPlus(x: Fraction): Fraction;
|
||
unaryPlus(x: string): string;
|
||
unaryPlus(x: Complex): Complex;
|
||
unaryPlus(x: MathArray): MathArray;
|
||
unaryPlus(x: Matrix): Matrix;
|
||
unaryPlus(x: Unit): Unit;
|
||
|
||
/**
|
||
* Calculate the extended greatest common divisor for two values. See
|
||
* http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm.
|
||
* @param a An integer number
|
||
* @param b An integer number
|
||
* @returns Returns an array containing 3 integers [div, m, n] where div
|
||
* = gcd(a, b) and a*m + b*n = div
|
||
*/
|
||
xgcd(a: number | BigNumber, b: number | BigNumber): MathArray;
|
||
|
||
/*************************************************************************
|
||
* Bitwise functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Bitwise AND two values, x & y. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x First value to and
|
||
* @param y Second value to and
|
||
* @returns AND of x and y
|
||
*/
|
||
bitAnd<T extends number | BigNumber | MathArray | Matrix>(
|
||
x: T,
|
||
y: number | BigNumber | MathArray | Matrix
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Bitwise NOT value, ~x. For matrices, the function is evaluated
|
||
* element wise. For units, the function is evaluated on the best prefix
|
||
* base.
|
||
* @param x Value to not
|
||
* @returns NOT of x
|
||
*/
|
||
bitNot(x: number): number;
|
||
bitNot(x: BigNumber): BigNumber;
|
||
bitNot(x: MathArray): MathArray;
|
||
bitNot(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Bitwise OR two values, x | y. For matrices, the function is evaluated
|
||
* element wise. For units, the function is evaluated on the lowest
|
||
* print base.
|
||
* @param x First value to or
|
||
* @param y Second value to or
|
||
* @returns OR of x and y
|
||
*/
|
||
bitOr(x: number, y: number): number;
|
||
bitOr(x: BigNumber, y: BigNumber): BigNumber;
|
||
bitOr(x: MathArray, y: MathArray): MathArray;
|
||
bitOr(x: Matrix, y: Matrix): Matrix;
|
||
|
||
/**
|
||
* Bitwise XOR two values, x ^ y. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x First value to xor
|
||
* @param y Second value to xor
|
||
* @returns XOR of x and y
|
||
*/
|
||
bitXor<T extends number | BigNumber | MathArray | Matrix>(
|
||
x: T,
|
||
y: number | BigNumber | MathArray | Matrix
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Bitwise left logical shift of a value x by y number of bits, x << y.
|
||
* For matrices, the function is evaluated element wise. For units, the
|
||
* function is evaluated on the best prefix base.
|
||
* @param x Value to be shifted
|
||
* @param y Amount of shifts
|
||
* @returns x shifted left y times
|
||
*/
|
||
leftShift<T extends number | BigNumber | MathArray | Matrix>(
|
||
x: T,
|
||
y: number | BigNumber
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Bitwise right arithmetic shift of a value x by y number of bits, x >>
|
||
* y. For matrices, the function is evaluated element wise. For units,
|
||
* the function is evaluated on the best prefix base.
|
||
* @param x Value to be shifted
|
||
* @param y Amount of shifts
|
||
* @returns x sign-filled shifted right y times
|
||
*/
|
||
rightArithShift<T extends number | BigNumber | MathArray | Matrix>(
|
||
x: T,
|
||
y: number | BigNumber
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Bitwise right logical shift of value x by y number of bits, x >>> y.
|
||
* For matrices, the function is evaluated element wise. For units, the
|
||
* function is evaluated on the best prefix base.
|
||
* @param x Value to be shifted
|
||
* @param y Amount of shifts
|
||
* @returns x zero-filled shifted right y times
|
||
*/
|
||
rightLogShift<T extends number | MathArray | Matrix>(
|
||
x: T,
|
||
y: number
|
||
): NoLiteralType<T>;
|
||
|
||
/*************************************************************************
|
||
* Combinatorics functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* The Bell Numbers count the number of partitions of a set. A partition
|
||
* is a pairwise disjoint subset of S whose union is S. bellNumbers only
|
||
* takes integer arguments. The following condition must be enforced: n
|
||
* >= 0
|
||
* @param n Total number of objects in the set
|
||
* @returns B(n)
|
||
*/
|
||
bellNumbers(n: number): number;
|
||
bellNumbers(n: BigNumber): BigNumber;
|
||
|
||
/**
|
||
* The Catalan Numbers enumerate combinatorial structures of many
|
||
* different types. catalan only takes integer arguments. The following
|
||
* condition must be enforced: n >= 0
|
||
* @param n nth Catalan number
|
||
* @returns Cn(n)
|
||
*/
|
||
catalan(n: number): number;
|
||
catalan(n: BigNumber): BigNumber;
|
||
|
||
/**
|
||
* The composition counts of n into k parts. Composition only takes
|
||
* integer arguments. The following condition must be enforced: k <= n.
|
||
* @param n Total number of objects in the set
|
||
* @param k Number of objects in the subset
|
||
* @returns Returns the composition counts of n into k parts.
|
||
*/
|
||
composition<T extends number | BigNumber>(
|
||
n: T,
|
||
k: number | BigNumber
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* The Stirling numbers of the second kind, counts the number of ways to
|
||
* partition a set of n labelled objects into k nonempty unlabelled
|
||
* subsets. stirlingS2 only takes integer arguments. The following
|
||
* condition must be enforced: k <= n. If n = k or k = 1, then s(n,k) =
|
||
* 1
|
||
* @param n Total number of objects in the set
|
||
* @param k Number of objects in the subset
|
||
* @returns S(n,k)
|
||
*/
|
||
stirlingS2<T extends number | BigNumber>(
|
||
n: T,
|
||
k: number | BigNumber
|
||
): NoLiteralType<T>;
|
||
|
||
/*************************************************************************
|
||
* Complex functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Compute the argument of a complex value. For a complex number a + bi,
|
||
* the argument is computed as atan2(b, a). For matrices, the function
|
||
* is evaluated element wise.
|
||
* @param x A complex number or array with complex numbers
|
||
* @returns The argument of x
|
||
*/
|
||
arg(x: number | Complex): number;
|
||
arg(x: BigNumber | Complex): BigNumber;
|
||
arg(x: MathArray): MathArray;
|
||
arg(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Compute the complex conjugate of a complex value. If x = a+bi, the
|
||
* complex conjugate of x is a - bi. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x A complex number or array with complex numbers
|
||
* @returns The complex conjugate of x
|
||
*/
|
||
conj<T extends number | BigNumber | Complex | MathArray | Matrix>(
|
||
x: T
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Get the imaginary part of a complex number. For a complex number a +
|
||
* bi, the function returns b. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x A complex number or array with complex numbers
|
||
* @returns The imaginary part of x
|
||
*/
|
||
im(
|
||
x: number | BigNumber | Complex | MathArray | Matrix
|
||
): number | BigNumber | MathArray | Matrix;
|
||
|
||
/**
|
||
* Get the real part of a complex number. For a complex number a + bi,
|
||
* the function returns a. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x A complex number or array of complex numbers
|
||
* @returns The real part of x
|
||
*/
|
||
re(
|
||
x: number | BigNumber | Complex | MathArray | Matrix
|
||
): number | BigNumber | MathArray | Matrix;
|
||
|
||
/*************************************************************************
|
||
* Geometry functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Calculates: The eucledian distance between two points in 2 and 3
|
||
* dimensional spaces. Distance between point and a line in 2 and 3
|
||
* dimensional spaces. Pairwise distance between a set of 2D or 3D
|
||
* points NOTE: When substituting coefficients of a line(a, b and c),
|
||
* use ax + by + c = 0 instead of ax + by = c For parametric equation of
|
||
* a 3D line, x0, y0, z0, a, b, c are from: (x−x0, y−y0, z−z0) = t(a, b,
|
||
* c)
|
||
* @param x Coordinates of the first point
|
||
* @param y Coordinates of the second point
|
||
* @returns Returns the distance from two/three points
|
||
*/
|
||
distance(
|
||
x: MathArray | Matrix | object,
|
||
y: MathArray | Matrix | object
|
||
): number | BigNumber;
|
||
|
||
/**
|
||
* Calculates the point of intersection of two lines in two or three
|
||
* dimensions and of a line and a plane in three dimensions. The inputs
|
||
* are in the form of arrays or 1 dimensional matrices. The line
|
||
* intersection functions return null if the lines do not meet. Note:
|
||
* Fill the plane coefficients as x + y + z = c and not as x + y + z + c
|
||
* = 0.
|
||
* @param w Co-ordinates of first end-point of first line
|
||
* @param x Co-ordinates of second end-point of first line
|
||
* @param y Co-ordinates of first end-point of second line OR
|
||
* Coefficients of the plane's equation
|
||
* @param z Co-ordinates of second end-point of second line OR null if
|
||
* the calculation is for line and plane
|
||
* @returns Returns the point of intersection of lines/lines-planes
|
||
*/
|
||
intersect(
|
||
w: MathArray | Matrix,
|
||
x: MathArray | Matrix,
|
||
y: MathArray | Matrix,
|
||
z: MathArray | Matrix
|
||
): MathArray;
|
||
|
||
/*************************************************************************
|
||
* Logical functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Logical and. Test whether two values are both defined with a
|
||
* nonzero/nonempty value. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x First value to and
|
||
* @param y Second value to and
|
||
* @returns Returns true when both inputs are defined with a
|
||
* nonzero/nonempty value.
|
||
*/
|
||
and(
|
||
x: number | BigNumber | Complex | Unit | MathArray | Matrix,
|
||
y: number | BigNumber | Complex | Unit | MathArray | Matrix
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/**
|
||
* Logical not. Flips boolean value of a given parameter. For matrices,
|
||
* the function is evaluated element wise.
|
||
* @param x First value to not
|
||
* @returns Returns true when input is a zero or empty value.
|
||
*/
|
||
not(
|
||
x: number | BigNumber | Complex | Unit | MathArray | Matrix
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/**
|
||
* Logical or. Test if at least one value is defined with a
|
||
* nonzero/nonempty value. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x First value to or
|
||
* @param y Second value to or
|
||
* @returns Returns true when one of the inputs is defined with a
|
||
* nonzero/nonempty value.
|
||
*/
|
||
or(
|
||
x: number | BigNumber | Complex | Unit | MathArray | Matrix,
|
||
y: number | BigNumber | Complex | Unit | MathArray | Matrix
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/**
|
||
* Logical xor. Test whether one and only one value is defined with a
|
||
* nonzero/nonempty value. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x First value to xor
|
||
* @param y Second value to xor
|
||
* @returns Returns true when one and only one input is defined with a
|
||
* nonzero/nonempty value.
|
||
*/
|
||
xor(
|
||
x: number | BigNumber | Complex | Unit | MathArray | Matrix,
|
||
y: number | BigNumber | Complex | Unit | MathArray | Matrix
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/*************************************************************************
|
||
* Matrix functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Concatenate two or more matrices. dim: number is a zero-based
|
||
* dimension over which to concatenate the matrices. By default the last
|
||
* dimension of the matrices.
|
||
* @param args Two or more matrices
|
||
* @returns Concatenated matrix
|
||
*/
|
||
concat(...args: Array<MathArray | Matrix>): MathArray | Matrix;
|
||
|
||
/**
|
||
* Calculate the cross product for two vectors in three dimensional
|
||
* space. The cross product of A = [a1, a2, a3] and B =[b1, b2, b3] is
|
||
* defined as: cross(A, B) = [ a2 * b3 - a3 * b2, a3 * b1 - a1 * b3, a1
|
||
* * b2 - a2 * b1 ]
|
||
* @param x First vector
|
||
* @param y Second vector
|
||
* @returns Returns the cross product of x and y
|
||
*/
|
||
cross(x: MathArray | Matrix, y: MathArray | Matrix): Matrix | MathArray;
|
||
|
||
/**
|
||
* Calculate the determinant of a matrix.
|
||
* @param x A Matrix
|
||
* @returns the determinant of x
|
||
*/
|
||
det(x: MathArray | Matrix): number;
|
||
|
||
/**
|
||
* Create a diagonal matrix or retrieve the diagonal of a matrix. When x
|
||
* is a vector, a matrix with vector x on the diagonal will be returned.
|
||
* When x is a two dimensional matrix, the matrixes kth diagonal will be
|
||
* returned as vector. When k is positive, the values are placed on the
|
||
* super diagonal. When k is negative, the values are placed on the sub
|
||
* diagonal.
|
||
* @param X A two dimensional matrix or a vector
|
||
* @param k The diagonal where the vector will be filled in or
|
||
* retrieved. Default value: 0.
|
||
* @param format The matrix storage format. Default value: 'dense'.
|
||
* @returns Diagonal matrix from input vector, or diagonal from input
|
||
* matrix
|
||
*/
|
||
diag(X: MathArray | Matrix, format?: string): Matrix;
|
||
diag(
|
||
X: MathArray | Matrix,
|
||
k: number | BigNumber,
|
||
format?: string
|
||
): Matrix | MathArray;
|
||
|
||
/**
|
||
* Calculate the dot product of two vectors. The dot product of A = [a1,
|
||
* a2, a3, ..., an] and B = [b1, b2, b3, ..., bn] is defined as: dot(A,
|
||
* B) = a1 * b1 + a2 * b2 + a3 * b3 + ... + an * bn
|
||
* @param x First vector
|
||
* @param y Second vector
|
||
* @returns Returns the dot product of x and y
|
||
*/
|
||
dot(x: MathArray | Matrix, y: MathArray | Matrix): number;
|
||
|
||
/**
|
||
* Compute the matrix exponential, expm(A) = e^A. The matrix must be
|
||
* square. Not to be confused with exp(a), which performs element-wise
|
||
* exponentiation. The exponential is calculated using the Padé
|
||
* approximant with scaling and squaring; see “Nineteen Dubious Ways to
|
||
* Compute the Exponential of a Matrix,” by Moler and Van Loan.
|
||
* @param x A square matrix
|
||
* @returns The exponential of x
|
||
*/
|
||
expm(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Create a 2-dimensional identity matrix with size m x n or n x n. The
|
||
* matrix has ones on the diagonal and zeros elsewhere.
|
||
* @param size The size for the matrix
|
||
* @param format The Matrix storage format
|
||
* @returns A matrix with ones on the diagonal
|
||
*/
|
||
identity(
|
||
size: number | number[] | Matrix | MathArray,
|
||
format?: string
|
||
): Matrix | MathArray | number;
|
||
/**
|
||
* @param m The x dimension for the matrix
|
||
* @param n The y dimension for the matrix
|
||
* @param format The Matrix storage format
|
||
* @returns A matrix with ones on the diagonal
|
||
*/
|
||
identity(m: number, n: number, format?: string): Matrix | MathArray | number;
|
||
|
||
/**
|
||
* Filter the items in an array or one dimensional matrix.
|
||
* @param x A one dimensional matrix or array to filter
|
||
* @param test A function or regular expression to test items. All
|
||
* entries for which test returns true are returned. When test is a
|
||
* function, it is invoked with three parameters: the value of the
|
||
* element, the index of the element, and the matrix/array being
|
||
* traversed. The function must return a boolean.
|
||
*/
|
||
filter(
|
||
x: Matrix | MathArray | string[],
|
||
test: ((value: any, index: any, matrix: Matrix | MathArray | string[]) => boolean) | RegExp
|
||
): Matrix | MathArray;
|
||
|
||
/**
|
||
* Flatten a multi dimensional matrix into a single dimensional matrix.
|
||
* @param x Matrix to be flattened
|
||
* @returns Returns the flattened matrix
|
||
*/
|
||
flatten<T extends MathArray | Matrix>(x: T): T;
|
||
|
||
/**
|
||
* Iterate over all elements of a matrix/array, and executes the given
|
||
* callback function.
|
||
* @param x The matrix to iterate on.
|
||
* @param callback The callback function is invoked with three
|
||
* parameters: the value of the element, the index of the element, and
|
||
* the Matrix/array being traversed.
|
||
*/
|
||
forEach<T extends Matrix | MathArray>(x: T, callback: ((value: any, index: any, matrix: T) => void)): void;
|
||
|
||
/**
|
||
* Calculate the inverse of a square matrix.
|
||
* @param x Matrix to be inversed
|
||
* @returns The inverse of x
|
||
*/
|
||
inv<T extends number | Complex | MathArray | Matrix>(
|
||
x: T
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Calculate the kronecker product of two matrices or vectors
|
||
* @param x First vector
|
||
* @param y Second vector
|
||
* @returns Returns the kronecker product of x and y
|
||
*/
|
||
kron(x: Matrix | MathArray, y: Matrix | MathArray): Matrix;
|
||
|
||
/**
|
||
* Iterate over all elements of a matrix/array, and executes the given
|
||
* callback function.
|
||
* @param x The matrix to iterate on.
|
||
* @param callback The callback function is invoked with three
|
||
* parameters: the value of the element, the index of the element, and
|
||
* the Matrix/array being traversed.
|
||
* @returns Transformed map of x
|
||
*/
|
||
map<T extends Matrix | MathArray>(x: T, callback: ((value: any, index: any, matrix: T) => MathType | string)): T;
|
||
|
||
/**
|
||
* Create a matrix filled with ones. The created matrix can have one or
|
||
* multiple dimensions.
|
||
* @param size The size of each dimension of the matrix
|
||
* @param format The matrix storage format
|
||
* @returns A matrix filled with ones
|
||
*/
|
||
ones(size: number | number[], format?: string): MathArray | Matrix;
|
||
/**
|
||
* @param m The x dimension of the matrix
|
||
* @param n The y dimension of the amtrix
|
||
* @param format The matrix storage format
|
||
* @returns A matrix filled with ones
|
||
*/
|
||
ones(m: number, n: number, format?: string): MathArray | Matrix;
|
||
|
||
/**
|
||
* Partition-based selection of an array or 1D matrix. Will find the kth
|
||
* smallest value, and mutates the input array. Uses Quickselect.
|
||
* @param x A one dimensional matrix or array to sort
|
||
* @param k The kth smallest value to be retrieved; zero-based index
|
||
* @param compare An optional comparator function. The function is
|
||
* called as compare(a, b), and must return 1 when a > b, -1 when a < b,
|
||
* and 0 when a == b. Default value: 'asc'.
|
||
* @returns Returns the kth lowest value.
|
||
*/
|
||
partitionSelect(
|
||
x: MathArray | Matrix,
|
||
k: number,
|
||
compare?: "asc" | "desc" | ((a: any, b: any) => number)
|
||
): any;
|
||
|
||
/**
|
||
* Create an array from a range. By default, the range end is excluded.
|
||
* This can be customized by providing an extra parameter includeEnd.
|
||
* @param str A string 'start:end' or 'start:step:end'
|
||
* @param start Start of the range
|
||
* @param end End of the range, excluded by default, included when
|
||
* parameter includeEnd=true
|
||
* @param step Step size. Default value is 1.
|
||
* @param includeEnd: Option to specify whether to include the end or
|
||
* not. False by default
|
||
* @returns Parameters describing the ranges start, end, and optional
|
||
* step.
|
||
*/
|
||
range(str: string, includeEnd?: boolean): Matrix;
|
||
range(
|
||
start: number | BigNumber,
|
||
end: number | BigNumber,
|
||
includeEnd?: boolean
|
||
): Matrix;
|
||
range(
|
||
start: number | BigNumber,
|
||
end: number | BigNumber,
|
||
step: number | BigNumber,
|
||
includeEnd?: boolean
|
||
): Matrix;
|
||
|
||
/**
|
||
* Reshape a multi dimensional array to fit the specified dimensions
|
||
* @param x Matrix to be reshaped
|
||
* @param sizes One dimensional array with integral sizes for each
|
||
* dimension
|
||
* @returns A reshaped clone of matrix x
|
||
*/
|
||
reshape<T extends MathArray | Matrix>(
|
||
x: T,
|
||
sizes: number[]
|
||
): T;
|
||
|
||
/**
|
||
* Resize a matrix
|
||
* @param x Matrix to be resized
|
||
* @param size One dimensional array with numbers
|
||
* @param defaultValue Zero by default, except in case of a string, in
|
||
* that case defaultValue = ' ' Default value: 0.
|
||
* @returns A resized clone of matrix x
|
||
*/
|
||
resize<T extends MathArray | Matrix>(
|
||
x: T,
|
||
size: MathArray | Matrix,
|
||
defaultValue?: number | string
|
||
): T;
|
||
|
||
/**
|
||
* Calculate the size of a matrix or scalar.
|
||
* @param A matrix
|
||
* @returns A vector with the size of x
|
||
*/
|
||
size(
|
||
x: boolean | number | Complex | Unit | string | MathArray | Matrix
|
||
): MathArray | Matrix;
|
||
|
||
/**
|
||
* Sort the items in a matrix
|
||
* @param x A one dimensional matrix or array to sort
|
||
* @param compare An optional _comparator function or name. The function
|
||
* is called as compare(a, b), and must return 1 when a > b, -1 when a <
|
||
* b, and 0 when a == b. Default value: ‘asc’
|
||
* @returns Returns the sorted matrix
|
||
*/
|
||
sort<T extends Matrix | MathArray>(
|
||
x: T,
|
||
compare: ((a: any, b: any) => number) | "asc" | "desc" | "natural"
|
||
): T;
|
||
|
||
/**
|
||
* Calculate the principal square root of a square matrix. The principal
|
||
* square root matrix X of another matrix A is such that X * X = A.
|
||
* @param A The square matrix A
|
||
* @returns The principal square root of matrix A
|
||
*/
|
||
sqrtm<T extends MathArray | Matrix>(A: T): T;
|
||
|
||
/**
|
||
* Squeeze a matrix, remove inner and outer singleton dimensions from a
|
||
* matrix.
|
||
* @param x Matrix to be squeezed
|
||
* @returns Squeezed matrix
|
||
*/
|
||
squeeze<T extends MathArray | Matrix>(x: T): T;
|
||
|
||
/**
|
||
* Get or set a subset of a matrix or string.
|
||
* @param value An array, matrix, or string
|
||
* @param index An index containing ranges for each dimension
|
||
* @param replacement An array, matrix, or scalar. If provided, the
|
||
* subset is replaced with replacement. If not provided, the subset is
|
||
* returned
|
||
* @param defaultValue Default value, filled in on new entries when the
|
||
* matrix is resized. If not provided, math.matrix elements will be left
|
||
* undefined. Default value: undefined.
|
||
* @returns Either the retrieved subset or the updated matrix
|
||
*/
|
||
subset<T extends MathArray | Matrix | string>(
|
||
value: T,
|
||
index: Index,
|
||
replacement?: any,
|
||
defaultValue?: any
|
||
): T;
|
||
|
||
/**
|
||
* Calculate the trace of a matrix: the sum of the elements on the main
|
||
* diagonal of a square matrix.
|
||
* @param x A matrix
|
||
* @returns The trace of x
|
||
*/
|
||
trace(x: MathArray | Matrix): number;
|
||
|
||
/**
|
||
* Transpose a matrix. All values of the matrix are reflected over its
|
||
* main diagonal. Only two dimensional matrices are supported.
|
||
* @param x Matrix to be transposed
|
||
* @returns The transposed matrix
|
||
*/
|
||
transpose<T extends MathArray | Matrix>(x: T): T;
|
||
|
||
/**
|
||
* Create a matrix filled with zeros. The created matrix can have one or
|
||
* multiple dimensions.
|
||
* @param size The size of each dimension of the matrix
|
||
* @param format The matrix storage format
|
||
* @returns A matrix filled with zeros
|
||
*/
|
||
zeros(size: number | number[], format?: string): MathArray | Matrix;
|
||
/**
|
||
* @param m The x dimension of the matrix
|
||
* @param n The y dimension of the matrix
|
||
* @param format The matrix storage format
|
||
* @returns A matrix filled with zeros
|
||
*/
|
||
zeros(m: number, n: number, format?: string): MathArray | Matrix;
|
||
|
||
/*************************************************************************
|
||
* Probability functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Compute the number of ways of picking k unordered outcomes from n
|
||
* possibilities. Combinations only takes integer arguments. The
|
||
* following condition must be enforced: k <= n.
|
||
* @param n Total number of objects in the set
|
||
* @param k Number of objects in the subset
|
||
* @returns Number of possible combinations
|
||
*/
|
||
combinations<T extends number | BigNumber>(
|
||
n: T,
|
||
k: number | BigNumber
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Compute the factorial of a value Factorial only supports an integer
|
||
* value as argument. For matrices, the function is evaluated element
|
||
* wise.
|
||
* @param n An integer number
|
||
* @returns The factorial of n
|
||
*/
|
||
factorial<T extends number | BigNumber | MathArray | Matrix>(
|
||
n: T
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Compute the gamma function of a value using Lanczos approximation for
|
||
* small values, and an extended Stirling approximation for large
|
||
* values. For matrices, the function is evaluated element wise.
|
||
* @param n A real or complex number
|
||
* @returns The gamma of n
|
||
*/
|
||
gamma(n: number | MathArray | Matrix): number | MathArray | Matrix;
|
||
|
||
/**
|
||
* Calculate the Kullback-Leibler (KL) divergence between two
|
||
* distributions
|
||
* @param q First vector
|
||
* @param p Second vector
|
||
* @returns Returns disance between q and p
|
||
*/
|
||
kldivergence(q: MathArray | Matrix, p: MathArray | Matrix): number;
|
||
|
||
/**
|
||
* Multinomial Coefficients compute the number of ways of picking a1,
|
||
* a2, ..., ai unordered outcomes from n possibilities. multinomial
|
||
* takes one array of integers as an argument. The following condition
|
||
* must be enforced: every ai <= 0
|
||
* @param a Integer number of objects in the subset
|
||
* @returns multinomial coefficent
|
||
*/
|
||
multinomial<T extends number | BigNumber>(a: T[]): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Compute the number of ways of obtaining an ordered subset of k
|
||
* elements from a set of n elements. Permutations only takes integer
|
||
* arguments. The following condition must be enforced: k <= n.
|
||
* @param n The number of objects in total
|
||
* @param k The number of objects in the subset
|
||
* @returns The number of permutations
|
||
*/
|
||
permutations<T extends number | BigNumber>(
|
||
n: T,
|
||
k?: number | BigNumber
|
||
): NoLiteralType<T>;
|
||
|
||
/**
|
||
* Random pick a value from a one dimensional array. Array element is
|
||
* picked using a random function with uniform distribution.
|
||
* @param array A one dimensional array
|
||
* @param number An int or float
|
||
* @param weights An array of ints or floats
|
||
* @returns Returns a single random value from array when number is 1 or
|
||
* undefined. Returns an array with the configured number of elements
|
||
* when number is > 1.
|
||
*/
|
||
pickRandom(
|
||
array: number[],
|
||
number?: number,
|
||
weights?: number[]
|
||
): number | number[];
|
||
|
||
/**
|
||
* Return a random number larger or equal to min and smaller than max
|
||
* using a uniform distribution.
|
||
* @param size If provided, an array or matrix with given size and
|
||
* filled with random values is returned
|
||
* @param min Minimum boundary for the random value, included
|
||
* @param max Maximum boundary for the random value, excluded
|
||
* @returns A random number
|
||
*/
|
||
random(min?: number, max?: number): number;
|
||
random<T extends MathArray | Matrix>(
|
||
size: T,
|
||
min?: number,
|
||
max?: number
|
||
): T;
|
||
|
||
/**
|
||
* Return a random integer number larger or equal to min and smaller
|
||
* than max using a uniform distribution.
|
||
* @param size If provided, an array or matrix with given size and
|
||
* filled with random values is returned
|
||
* @param min Minimum boundary for the random value, included
|
||
* @param max Maximum boundary for the random value, excluded
|
||
* @returns A random number
|
||
*/
|
||
randomInt(min: number, max?: number): number;
|
||
randomInt<T extends MathArray | Matrix>(
|
||
size: T,
|
||
min?: number,
|
||
max?: number
|
||
): T;
|
||
|
||
/*************************************************************************
|
||
* Relational functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Compare two values. Returns 1 when x > y, -1 when x < y, and 0 when x
|
||
* == y. x and y are considered equal when the relative difference
|
||
* between x and y is smaller than the configured epsilon. The function
|
||
* cannot be used to compare values smaller than approximately 2.22e-16.
|
||
* For matrices, the function is evaluated element wise.
|
||
* @param x First value to compare
|
||
* @param y Second value to compare
|
||
* @returns Returns the result of the comparison: 1 when x > y, -1 when
|
||
* x < y, and 0 when x == y.
|
||
*/
|
||
compare(
|
||
x: MathType | string,
|
||
y: MathType | string
|
||
): number | BigNumber | Fraction | MathArray | Matrix;
|
||
|
||
/**
|
||
* Compare two values of any type in a deterministic, natural way. For
|
||
* numeric values, the function works the same as math.compare. For
|
||
* types of values that can’t be compared mathematically, the function
|
||
* compares in a natural way.
|
||
* @param x First value to compare
|
||
* @param y Second value to compare
|
||
* @returns Returns the result of the comparison: 1 when x > y, -1 when
|
||
* x < y, and 0 when x == y.
|
||
*/
|
||
compareNatural(x: any, y: any): number;
|
||
|
||
/**
|
||
* Compare two strings lexically. Comparison is case sensitive. Returns
|
||
* 1 when x > y, -1 when x < y, and 0 when x == y. For matrices, the
|
||
* function is evaluated element wise.
|
||
* @param x First string to compare
|
||
* @param y Second string to compare
|
||
* @returns Returns the result of the comparison: 1 when x > y, -1 when
|
||
* x < y, and 0 when x == y.
|
||
*/
|
||
compareText(
|
||
x: string | MathArray | Matrix,
|
||
y: string | MathArray | Matrix
|
||
): number | MathArray | Matrix;
|
||
|
||
/**
|
||
* Test element wise whether two matrices are equal. The function
|
||
* accepts both matrices and scalar values.
|
||
* @param x First matrix to compare
|
||
* @param y Second amtrix to compare
|
||
* @returns Returns true when the input matrices have the same size and
|
||
* each of their elements is equal.
|
||
*/
|
||
deepEqual(
|
||
x: MathType,
|
||
y: MathType
|
||
): number | BigNumber | Fraction | Complex | Unit | MathArray | Matrix;
|
||
|
||
/**
|
||
* Test whether two values are equal.
|
||
*
|
||
* The function tests whether the relative difference between x and y is
|
||
* smaller than the configured epsilon. The function cannot be used to
|
||
* compare values smaller than approximately 2.22e-16. For matrices, the
|
||
* function is evaluated element wise. In case of complex numbers, x.re
|
||
* must equal y.re, and x.im must equal y.im. Values null and undefined
|
||
* are compared strictly, thus null is only equal to null and nothing
|
||
* else, and undefined is only equal to undefined and nothing else.
|
||
* @param x First value to compare
|
||
* @param y Second value to compare
|
||
* @returns Returns true when the compared values are equal, else
|
||
* returns false
|
||
*/
|
||
equal(
|
||
x: MathType | string,
|
||
y: MathType | string
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/**
|
||
* Check equality of two strings. Comparison is case sensitive. For
|
||
* matrices, the function is evaluated element wise.
|
||
* @param x First string to compare
|
||
* @param y Second string to compare
|
||
* @returns Returns true if the values are equal, and false if not.
|
||
*/
|
||
equalText(
|
||
x: string | MathArray | Matrix,
|
||
y: string | MathArray | Matrix
|
||
): number | MathArray | Matrix;
|
||
|
||
/**
|
||
* Test whether value x is larger than y. The function returns true when
|
||
* x is larger than y and the relative difference between x and y is
|
||
* larger than the configured epsilon. The function cannot be used to
|
||
* compare values smaller than approximately 2.22e-16. For matrices, the
|
||
* function is evaluated element wise.
|
||
* @param x First value to compare
|
||
* @param y Second value to vcompare
|
||
* @returns Returns true when x is larger than y, else returns false
|
||
*/
|
||
larger(
|
||
x: MathType | string,
|
||
y: MathType | string
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/**
|
||
* Test whether value x is larger or equal to y. The function returns
|
||
* true when x is larger than y or the relative difference between x and
|
||
* y is smaller than the configured epsilon. The function cannot be used
|
||
* to compare values smaller than approximately 2.22e-16. For matrices,
|
||
* the function is evaluated element wise.
|
||
* @param x First value to compare
|
||
* @param y Second value to vcompare
|
||
* @returns Returns true when x is larger than or equal to y, else
|
||
* returns false
|
||
*/
|
||
largerEq(
|
||
x: MathType | string,
|
||
y: MathType | string
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/**
|
||
* Test whether value x is smaller than y. The function returns true
|
||
* when x is smaller than y and the relative difference between x and y
|
||
* is smaller than the configured epsilon. The function cannot be used
|
||
* to compare values smaller than approximately 2.22e-16. For matrices,
|
||
* the function is evaluated element wise.
|
||
* @param x First value to compare
|
||
* @param y Second value to vcompare
|
||
* @returns Returns true when x is smaller than y, else returns false
|
||
*/
|
||
smaller(
|
||
x: MathType | string,
|
||
y: MathType | string
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/**
|
||
* Test whether value x is smaller or equal to y. The function returns
|
||
* true when x is smaller than y or the relative difference between x
|
||
* and y is smaller than the configured epsilon. The function cannot be
|
||
* used to compare values smaller than approximately 2.22e-16. For
|
||
* matrices, the function is evaluated element wise.
|
||
* @param x First value to compare
|
||
* @param y Second value to vcompare
|
||
* @returns Returns true when x is smaller than or equal to y, else
|
||
* returns false
|
||
*/
|
||
smallerEq(
|
||
x: MathType | string,
|
||
y: MathType | string
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/**
|
||
* Test whether two values are unequal. The function tests whether the
|
||
* relative difference between x and y is larger than the configured
|
||
* epsilon. The function cannot be used to compare values smaller than
|
||
* approximately 2.22e-16. For matrices, the function is evaluated
|
||
* element wise. In case of complex numbers, x.re must unequal y.re, or
|
||
* x.im must unequal y.im. Values null and undefined are compared
|
||
* strictly, thus null is unequal with everything except null, and
|
||
* undefined is unequal with everything except undefined.
|
||
* @param x First value to compare
|
||
* @param y Second value to vcompare
|
||
* @returns Returns true when the compared values are unequal, else
|
||
* returns false
|
||
*/
|
||
unequal(
|
||
x: MathType | string,
|
||
y: MathType | string
|
||
): boolean | MathArray | Matrix;
|
||
|
||
/*************************************************************************
|
||
* Set functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Create the cartesian product of two (multi)sets. Multi-dimension
|
||
* arrays will be converted to single-dimension arrays before the
|
||
* operation.
|
||
* @param a1 A (multi)set
|
||
* @param a2 A (multi)set
|
||
* @returns The cartesian product of two (multi)sets
|
||
*/
|
||
setCartesian<T extends MathArray | Matrix>(
|
||
a1: T,
|
||
a2: MathArray | Matrix
|
||
): T;
|
||
|
||
/**
|
||
* Create the difference of two (multi)sets: every element of set1, that
|
||
* is not the element of set2. Multi-dimension arrays will be converted
|
||
* to single-dimension arrays before the operation
|
||
* @param a1 A (multi)set
|
||
* @param a2 A (multi)set
|
||
* @returns The difference of two (multi)sets
|
||
*/
|
||
setDifference<T extends MathArray | Matrix>(
|
||
a1: T,
|
||
a2: MathArray | Matrix
|
||
): T;
|
||
|
||
/**
|
||
* Collect the distinct elements of a multiset. A multi-dimension array
|
||
* will be converted to a single-dimension array before the operation.
|
||
* @param a A multiset
|
||
* @returns A set containing the distinct elements of the multiset
|
||
*/
|
||
setDistinct<T extends MathArray | Matrix>(a: T): T;
|
||
|
||
/**
|
||
* Create the intersection of two (multi)sets. Multi-dimension arrays
|
||
* will be converted to single-dimension arrays before the operation.
|
||
* @param a1 A (multi)set
|
||
* @param a2 A (multi)set
|
||
* @returns The intersection of two (multi)sets
|
||
*/
|
||
setIntersect<T extends MathArray | Matrix>(
|
||
a1: T,
|
||
a2: MathArray | Matrix
|
||
): T;
|
||
|
||
/**
|
||
* Check whether a (multi)set is a subset of another (multi)set. (Every
|
||
* element of set1 is the element of set2.) Multi-dimension arrays will
|
||
* be converted to single-dimension arrays before the operation.
|
||
* @param a1 A (multi)set
|
||
* @param a2 A (multi)set
|
||
* @returns True if a1 is subset of a2, else false
|
||
*/
|
||
setIsSubset(a1: MathArray | Matrix, a2: MathArray | Matrix): boolean;
|
||
|
||
/**
|
||
* Count the multiplicity of an element in a multiset. A multi-dimension
|
||
* array will be converted to a single-dimension array before the
|
||
* operation.
|
||
* @param e An element in the multiset
|
||
* @param a A multiset
|
||
* @returns The number of how many times the multiset contains the
|
||
* element
|
||
*/
|
||
setMultiplicity(
|
||
e: number | BigNumber | Fraction | Complex,
|
||
a: MathArray | Matrix
|
||
): number;
|
||
|
||
/**
|
||
* Create the powerset of a (multi)set. (The powerset contains very
|
||
* possible subsets of a (multi)set.) A multi-dimension array will be
|
||
* converted to a single-dimension array before the operation.
|
||
* @param a A multiset
|
||
* @returns The powerset of the (multi)set
|
||
*/
|
||
setPowerset<T extends MathArray | Matrix>(a: T): T;
|
||
|
||
/**
|
||
* Count the number of elements of a (multi)set. When a second parameter
|
||
* is ‘true’, count only the unique values. A multi-dimension array will
|
||
* be converted to a single-dimension array before the operation.
|
||
* @param a A multiset
|
||
* @returns The number of elements of the (multi)set
|
||
*/
|
||
setSize(a: MathArray | Matrix): number;
|
||
|
||
/**
|
||
* Create the symmetric difference of two (multi)sets. Multi-dimension
|
||
* arrays will be converted to single-dimension arrays before the
|
||
* operation.
|
||
* @param a1 A (multi)set
|
||
* @param a2 A (multi)set
|
||
* @returns The symmetric difference of two (multi)sets
|
||
*/
|
||
setSymDifference<T extends MathArray | Matrix>(
|
||
a1: T,
|
||
a2: MathArray | Matrix
|
||
): T;
|
||
|
||
/**
|
||
* Create the union of two (multi)sets. Multi-dimension arrays will be
|
||
* converted to single-dimension arrays before the operation.
|
||
* @param a1 A (multi)set
|
||
* @param a2 A (multi)set
|
||
* @returns The union of two (multi)sets
|
||
*/
|
||
setUnion<T extends MathArray | Matrix>(
|
||
a1: T,
|
||
a2: MathArray | Matrix
|
||
): T;
|
||
|
||
/*************************************************************************
|
||
* Special functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Compute the erf function of a value using a rational Chebyshev
|
||
* approximations for different intervals of x.
|
||
* @param x A real number
|
||
* @returns The erf of x
|
||
*/
|
||
erf<T extends number | MathArray | Matrix>(x: T): NoLiteralType<T>;
|
||
|
||
/*************************************************************************
|
||
* Statistics functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Compute the median absolute deviation of a matrix or a list with
|
||
* values. The median absolute deviation is defined as the median of the
|
||
* absolute deviations from the median.
|
||
* @param array A single matrix or multiple scalar values.
|
||
* @returns The median absolute deviation
|
||
*/
|
||
mad(array: MathArray | Matrix): any;
|
||
|
||
/**
|
||
* Compute the maximum value of a matrix or a list with values. In case
|
||
* of a multi dimensional array, the maximum of the flattened array will
|
||
* be calculated. When dim is provided, the maximum over the selected
|
||
* dimension will be calculated. Parameter dim is zero-based.
|
||
* @param args A single matrix or multiple scalar values
|
||
* @returns The maximum value
|
||
*/
|
||
max(...args: MathType[]): any;
|
||
/**
|
||
* @param A A single matrix
|
||
* @param dim The maximum over the selected dimension
|
||
* @returns The maximum value
|
||
*/
|
||
max(A: MathArray | Matrix, dim?: number): any;
|
||
|
||
/**
|
||
* Compute the mean value of matrix or a list with values. In case of a
|
||
* multi dimensional array, the mean of the flattened array will be
|
||
* calculated. When dim is provided, the maximum over the selected
|
||
* dimension will be calculated. Parameter dim is zero-based.
|
||
* @param args A single matrix or multiple scalar values
|
||
* @returns The mean of all values
|
||
*/
|
||
mean(...args: MathType[]): any;
|
||
/**
|
||
* @param A A single matrix
|
||
* @param dim The mean over the selected dimension
|
||
* @returns The mean of all values
|
||
*/
|
||
mean(A: MathArray | Matrix, dim?: number): any;
|
||
|
||
/**
|
||
* Compute the median of a matrix or a list with values. The values are
|
||
* sorted and the middle value is returned. In case of an even number of
|
||
* values, the average of the two middle values is returned. Supported
|
||
* types of values are: Number, BigNumber, Unit In case of a (multi
|
||
* dimensional) array or matrix, the median of all elements will be
|
||
* calculated.
|
||
* @param args A single matrix or or multiple scalar values
|
||
* @returns The median
|
||
*/
|
||
median(...args: MathType[]): any;
|
||
|
||
/**
|
||
* Compute the maximum value of a matrix or a list of values. In case of
|
||
* a multi dimensional array, the maximum of the flattened array will be
|
||
* calculated. When dim is provided, the maximum over the selected
|
||
* dimension will be calculated. Parameter dim is zero-based.
|
||
* @param args A single matrix or or multiple scalar values
|
||
* @returns The minimum value
|
||
*/
|
||
min(...args: MathType[]): any;
|
||
/**
|
||
* @param A A single matrix
|
||
* @param dim The minimum over the selected dimension
|
||
* @returns The minimum value
|
||
*/
|
||
min(A: MathArray | Matrix, dim?: number): any;
|
||
|
||
/**
|
||
* Computes the mode of a set of numbers or a list with values(numbers
|
||
* or characters). If there are more than one modes, it returns a list
|
||
* of those values.
|
||
* @param args A single matrix
|
||
* @returns The mode of all values
|
||
*/
|
||
mode(...args: MathType[]): any;
|
||
|
||
/**
|
||
* Compute the product of a matrix or a list with values. In case of a
|
||
* (multi dimensional) array or matrix, the sum of all elements will be
|
||
* calculated.
|
||
* @param args A single matrix or multiple scalar values
|
||
* @returns The product of all values
|
||
*/
|
||
prod(...args: MathType[]): any;
|
||
|
||
/**
|
||
* Compute the prob order quantile of a matrix or a list with values.
|
||
* The sequence is sorted and the middle value is returned. Supported
|
||
* types of sequence values are: Number, BigNumber, Unit Supported types
|
||
* of probability are: Number, BigNumber In case of a (multi
|
||
* dimensional) array or matrix, the prob order quantile of all elements
|
||
* will be calculated.
|
||
* @param A A single matrix or array
|
||
* @param probOrN prob is the order of the quantile, while N is the
|
||
* amount of evenly distributed steps of probabilities; only one of
|
||
* these options can be provided
|
||
* @param sorted =false is data sorted in ascending order
|
||
* @returns Quantile(s)
|
||
*/
|
||
quantileSeq(
|
||
A: MathArray | Matrix,
|
||
prob: number | BigNumber | MathArray,
|
||
sorted?: boolean
|
||
): number | BigNumber | Unit | MathArray;
|
||
|
||
/**
|
||
* Compute the standard deviation of a matrix or a list with values. The
|
||
* standard deviations is defined as the square root of the variance:
|
||
* std(A) = sqrt(variance(A)). In case of a (multi dimensional) array or
|
||
* matrix, the standard deviation over all elements will be calculated.
|
||
* Optionally, the type of normalization can be specified as second
|
||
* parameter. The parameter normalization can be one of the following
|
||
* values: 'unbiased' (default) The sum of squared errors is divided by
|
||
* (n - 1) 'uncorrected' The sum of squared errors is divided by n
|
||
* 'biased' The sum of squared errors is divided by (n + 1)
|
||
* @param array A single matrix or multiple scalar values
|
||
* @param normalization Determines how to normalize the variance. Choose
|
||
* ‘unbiased’ (default), ‘uncorrected’, or ‘biased’. Default value:
|
||
* ‘unbiased’.
|
||
* @returns The standard deviation
|
||
*/
|
||
std(
|
||
array: MathArray | Matrix,
|
||
normalization?: "unbiased" | "uncorrected" | "biased" | "unbiased"
|
||
): number;
|
||
|
||
/**
|
||
* Compute the sum of a matrix or a list with values. In case of a
|
||
* (multi dimensional) array or matrix, the sum of all elements will be
|
||
* calculated.
|
||
* @param args A single matrix or multiple scalar values
|
||
* @returns The sum of all values
|
||
*/
|
||
sum(...args: Array<number | BigNumber | Fraction>): any;
|
||
/**
|
||
* @param array A single matrix
|
||
* @returns The sum of all values
|
||
*/
|
||
sum(array: MathArray | Matrix): any;
|
||
|
||
/**
|
||
* Compute the variance of a matrix or a list with values. In case of a
|
||
* (multi dimensional) array or matrix, the variance over all elements
|
||
* will be calculated. Optionally, the type of normalization can be
|
||
* specified as second parameter. The parameter normalization can be one
|
||
* of the following values: 'unbiased' (default) The sum of squared
|
||
* errors is divided by (n - 1) 'uncorrected' The sum of squared errors
|
||
* is divided by n 'biased' The sum of squared errors is divided by (n +
|
||
* 1) Note that older browser may not like the variable name var. In
|
||
* that case, the function can be called as math['var'](...) instead of
|
||
* math.variance(...).
|
||
* @param args A single matrix or multiple scalar values
|
||
* @returns The variance
|
||
*/
|
||
variance(...args: Array<number | BigNumber | Fraction>): any;
|
||
/**
|
||
* @param array A single matrix
|
||
* @param normalization normalization Determines how to normalize the
|
||
* variance. Choose ‘unbiased’ (default), ‘uncorrected’, or ‘biased’.
|
||
* Default value: ‘unbiased’.
|
||
* @returns The variance
|
||
*/
|
||
variance(
|
||
array: MathArray | Matrix,
|
||
normalization?: "unbiased" | "uncorrected" | "biased" | "unbiased"
|
||
): any;
|
||
|
||
/*************************************************************************
|
||
* String functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Format a value of any type into a string.
|
||
* @param value The value to be formatted
|
||
* @param options An object with formatting options.
|
||
* @param callback A custom formatting function, invoked for all numeric
|
||
* elements in value, for example all elements of a matrix, or the real
|
||
* and imaginary parts of a complex number. This callback can be used to
|
||
* override the built-in numeric notation with any type of formatting.
|
||
* Function callback is called with value as parameter and must return a
|
||
* string.
|
||
* @see http://mathjs.org/docs/reference/functions/format.html
|
||
* @returns The formatted value
|
||
*/
|
||
format(
|
||
value: any,
|
||
options?: FormatOptions | number | ((item: any) => string),
|
||
callback?: ((value: any) => string)
|
||
): string;
|
||
|
||
/**
|
||
* Interpolate values into a string template.
|
||
* @param template A string containing variable placeholders.
|
||
* @param values An object containing variables which will be filled in
|
||
* in the template.
|
||
* @param precision Number of digits to format numbers. If not provided,
|
||
* the value will not be rounded.
|
||
* @param options Formatting options, or the number of digits to format
|
||
* numbers. See function math.format for a description of all options.
|
||
* @returns Interpolated string
|
||
*/
|
||
print(
|
||
template: string,
|
||
values: any,
|
||
precision?: number,
|
||
options?: number | object
|
||
): void;
|
||
|
||
/*************************************************************************
|
||
* Trigonometry functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Calculate the inverse cosine of a value. For matrices, the function
|
||
* is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The arc cosine of x
|
||
*/
|
||
acos(x: number): number;
|
||
acos(x: BigNumber): BigNumber;
|
||
acos(x: Complex): Complex;
|
||
acos(x: MathArray): MathArray;
|
||
acos(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arccos of a value, defined as acosh(x) =
|
||
* ln(sqrt(x^2 - 1) + x). For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic arccosine of x
|
||
*/
|
||
acosh(x: number): number;
|
||
acosh(x: BigNumber): BigNumber;
|
||
acosh(x: Complex): Complex;
|
||
acosh(x: MathArray): MathArray;
|
||
acosh(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the inverse cotangent of a value. For matrices, the
|
||
* function is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The arc cotangent of x
|
||
*/
|
||
acot(x: number): number;
|
||
acot(x: BigNumber): BigNumber;
|
||
acot(x: MathArray): MathArray;
|
||
acot(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arccotangent of a value, defined as acoth(x)
|
||
* = (ln((x+1)/x) + ln(x/(x-1))) / 2. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic arccotangent of x
|
||
*/
|
||
acoth(x: number): number;
|
||
acoth(x: BigNumber): BigNumber;
|
||
acoth(x: MathArray): MathArray;
|
||
acoth(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the inverse cosecant of a value. For matrices, the function
|
||
* is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The arc cosecant of x
|
||
*/
|
||
acsc(x: number): number;
|
||
acsc(x: BigNumber): BigNumber;
|
||
acsc(x: MathArray): MathArray;
|
||
acsc(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arccosecant of a value, defined as acsch(x)
|
||
* = ln(1/x + sqrt(1/x^2 + 1)). For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic arccosecant of x
|
||
*/
|
||
acsch(x: number): number;
|
||
acsch(x: BigNumber): BigNumber;
|
||
acsch(x: MathArray): MathArray;
|
||
acsch(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the inverse secant of a value. For matrices, the function
|
||
* is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The arc secant of x
|
||
*/
|
||
asec(x: number): number;
|
||
asec(x: BigNumber): BigNumber;
|
||
asec(x: MathArray): MathArray;
|
||
asec(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arcsecant of a value, defined as asech(x) =
|
||
* ln(sqrt(1/x^2 - 1) + 1/x). For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic arcsecant of x
|
||
*/
|
||
asech(x: number): number;
|
||
asech(x: BigNumber): BigNumber;
|
||
asech(x: MathArray): MathArray;
|
||
asech(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the inverse sine of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The arc sine of x
|
||
*/
|
||
asin(x: number): number;
|
||
asin(x: BigNumber): BigNumber;
|
||
asin(x: Complex): Complex;
|
||
asin(x: MathArray): MathArray;
|
||
asin(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arcsine of a value, defined as asinh(x) =
|
||
* ln(x + sqrt(x^2 + 1)). For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic arcsine of x
|
||
*/
|
||
asinh(x: number): number;
|
||
asinh(x: BigNumber): BigNumber;
|
||
asinh(x: MathArray): MathArray;
|
||
asinh(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the inverse tangent of a value. For matrices, the function
|
||
* is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The arc tangent of x
|
||
*/
|
||
atan(x: number): number;
|
||
atan(x: BigNumber): BigNumber;
|
||
atan(x: MathArray): MathArray;
|
||
atan(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the inverse tangent function with two arguments, y/x. By
|
||
* providing two arguments, the right quadrant of the computed angle can
|
||
* be determined. For matrices, the function is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns Four quadrant inverse tangent
|
||
*/
|
||
atan2(y: number, x: number): number;
|
||
atan2(y: MathArray | Matrix, x: MathArray | Matrix): MathArray | Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arctangent of a value, defined as atanh(x) =
|
||
* ln((1 + x)/(1 - x)) / 2. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic arctangent of x
|
||
*/
|
||
atanh(x: number): number;
|
||
atanh(x: BigNumber): BigNumber;
|
||
atanh(x: MathArray): MathArray;
|
||
atanh(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the cosine of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The cosine of x
|
||
*/
|
||
cos(x: number | Unit): number;
|
||
cos(x: BigNumber): BigNumber;
|
||
cos(x: Complex): Complex;
|
||
cos(x: MathArray): MathArray;
|
||
cos(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic cosine of a value, defined as cosh(x) = 1/2
|
||
* * (exp(x) + exp(-x)). For matrices, the function is evaluated element
|
||
* wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic cosine of x
|
||
*/
|
||
cosh(x: number | Unit): number;
|
||
cosh(x: BigNumber): BigNumber;
|
||
cosh(x: Complex): Complex;
|
||
cosh(x: MathArray): MathArray;
|
||
cosh(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the cotangent of a value. cot(x) is defined as 1 / tan(x).
|
||
* For matrices, the function is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The cotangent of x
|
||
*/
|
||
cot(x: number | Unit): number;
|
||
cot(x: Complex): Complex;
|
||
cot(x: MathArray): MathArray;
|
||
cot(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic cotangent of a value, defined as coth(x) = 1
|
||
* / tanh(x). For matrices, the function is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic cotangent of x
|
||
*/
|
||
coth(x: number | Unit): number;
|
||
coth(x: Complex): Complex;
|
||
coth(x: MathArray): MathArray;
|
||
coth(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the cosecant of a value, defined as csc(x) = 1/sin(x). For
|
||
* matrices, the function is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The cosecant hof x
|
||
*/
|
||
csc(x: number | Unit): number;
|
||
csc(x: Complex): Complex;
|
||
csc(x: MathArray): MathArray;
|
||
csc(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic cosecant of a value, defined as csch(x) = 1
|
||
* / sinh(x). For matrices, the function is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic cosecant of x
|
||
*/
|
||
csch(x: number | Unit): number;
|
||
csch(x: Complex): Complex;
|
||
csch(x: MathArray): MathArray;
|
||
csch(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the secant of a value, defined as sec(x) = 1/cos(x). For
|
||
* matrices, the function is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The secant of x
|
||
*/
|
||
sec(x: number | Unit): number;
|
||
sec(x: Complex): Complex;
|
||
sec(x: MathArray): MathArray;
|
||
sec(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic secant of a value, defined as sech(x) = 1 /
|
||
* cosh(x). For matrices, the function is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic secant of x
|
||
*/
|
||
sech(x: number | Unit): number;
|
||
sech(x: Complex): Complex;
|
||
sech(x: MathArray): MathArray;
|
||
sech(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the sine of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The sine of x
|
||
*/
|
||
sin(x: number | Unit): number;
|
||
sin(x: BigNumber): BigNumber;
|
||
sin(x: Complex): Complex;
|
||
sin(x: MathArray): MathArray;
|
||
sin(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic sine of a value, defined as sinh(x) = 1/2 *
|
||
* (exp(x) - exp(-x)). For matrices, the function is evaluated element
|
||
* wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic sine of x
|
||
*/
|
||
sinh(x: number | Unit): number;
|
||
sinh(x: BigNumber): BigNumber;
|
||
sinh(x: Complex): Complex;
|
||
sinh(x: MathArray): MathArray;
|
||
sinh(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the tangent of a value. tan(x) is equal to sin(x) / cos(x).
|
||
* For matrices, the function is evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The tangent of x
|
||
*/
|
||
tan(x: number | Unit): number;
|
||
tan(x: BigNumber): BigNumber;
|
||
tan(x: Complex): Complex;
|
||
tan(x: MathArray): MathArray;
|
||
tan(x: Matrix): Matrix;
|
||
|
||
/**
|
||
* Calculate the hyperbolic tangent of a value, defined as tanh(x) =
|
||
* (exp(2 * x) - 1) / (exp(2 * x) + 1). For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param x Function input
|
||
* @returns The hyperbolic tangent of x
|
||
*/
|
||
tanh(x: number | Unit): number;
|
||
tanh(x: BigNumber): BigNumber;
|
||
tanh(x: Complex): Complex;
|
||
tanh(x: MathArray): MathArray;
|
||
tanh(x: Matrix): Matrix;
|
||
|
||
/*************************************************************************
|
||
* Unit functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Change the unit of a value. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x The unit to be converted.
|
||
* @param unit New unit. Can be a string like "cm" or a unit without
|
||
* value.
|
||
* @returns Value with changed, fixed unit
|
||
*/
|
||
to(
|
||
x: Unit | MathArray | Matrix,
|
||
unit: Unit | string
|
||
): Unit | MathArray | Matrix;
|
||
|
||
/*************************************************************************
|
||
* Utils functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Clone an object.
|
||
* @param x Object to be cloned
|
||
* @returns A clone of object x
|
||
*/
|
||
clone(x: any): any;
|
||
|
||
/**
|
||
* Test whether a value is an integer number. The function supports
|
||
* number, BigNumber, and Fraction. The function is evaluated
|
||
* element-wise in case of Array or Matrix input.
|
||
* @param x Value to be tested
|
||
* @returns Returns true when x contains a numeric, integer value.
|
||
* Throws an error in case of an unknown data type.
|
||
*/
|
||
isInteger(
|
||
x: number | BigNumber | Fraction | MathArray | Matrix
|
||
): boolean;
|
||
|
||
/**
|
||
* Test whether a value is NaN (not a number). The function supports
|
||
* types number, BigNumber, Fraction, Unit and Complex. The function is
|
||
* evaluated element-wise in case of Array or Matrix input.
|
||
* @param x Value to be tested
|
||
* @returns Returns true when x is NaN. Throws an error in case of an
|
||
* unknown data type.
|
||
*/
|
||
isNaN(
|
||
x: number | BigNumber | Fraction | MathArray | Matrix | Unit
|
||
): boolean;
|
||
|
||
/**
|
||
* Test whether a value is negative: smaller than zero. The function
|
||
* supports types number, BigNumber, Fraction, and Unit. The function is
|
||
* evaluated element-wise in case of Array or Matrix input.
|
||
* @param x Value to be tested
|
||
* @returns Returns true when x is larger than zero. Throws an error in
|
||
* case of an unknown data type.
|
||
*/
|
||
isNegative(
|
||
x: number | BigNumber | Fraction | MathArray | Matrix | Unit
|
||
): boolean;
|
||
|
||
/**
|
||
* Test whether a value is an numeric value. The function is evaluated
|
||
* element-wise in case of Array or Matrix input.
|
||
* @param x Value to be tested
|
||
* @returns Returns true when x is a number, BigNumber, Fraction, or
|
||
* boolean. Returns false for other types. Throws an error in case of
|
||
* unknown types.
|
||
*/
|
||
isNumeric(x: any): x is number | BigNumber | Fraction | boolean;
|
||
|
||
/**
|
||
* Test whether a value is positive: larger than zero. The function
|
||
* supports types number, BigNumber, Fraction, and Unit. The function is
|
||
* evaluated element-wise in case of Array or Matrix input.
|
||
* @param x Value to be tested
|
||
* @returns Returns true when x is larger than zero. Throws an error in
|
||
* case of an unknown data type.
|
||
*/
|
||
isPositive(
|
||
x: number | BigNumber | Fraction | MathArray | Matrix | Unit
|
||
): boolean;
|
||
|
||
/**
|
||
* Test whether a value is prime: has no divisors other than itself and
|
||
* one. The function supports type number, bignumber. The function is
|
||
* evaluated element-wise in case of Array or Matrix input.
|
||
* @param x Value to be tested
|
||
* @returns Returns true when x is larger than zero. Throws an error in
|
||
* case of an unknown data type.
|
||
*/
|
||
isPrime(x: number | BigNumber | MathArray | Matrix): boolean;
|
||
|
||
/**
|
||
* Test whether a value is zero. The function can check for zero for
|
||
* types number, BigNumber, Fraction, Complex, and Unit. The function is
|
||
* evaluated element-wise in case of Array or Matrix input.
|
||
* @param x Value to be tested
|
||
* @returns Returns true when x is zero. Throws an error in case of an
|
||
* unknown data type.
|
||
*/
|
||
isZero(
|
||
x:
|
||
| number
|
||
| BigNumber
|
||
| Fraction
|
||
| MathArray
|
||
| Matrix
|
||
| Unit
|
||
| Complex
|
||
): boolean;
|
||
|
||
/**
|
||
* Determine the type of a variable.
|
||
* @param x The variable for which to test the type
|
||
* @returns Returns the name of the type. Primitive types are lower
|
||
* case, non-primitive types are upper-camel-case. For example ‘number’,
|
||
* ‘string’, ‘Array’, ‘Date’.
|
||
*/
|
||
typeOf(x: any): string;
|
||
|
||
/**
|
||
* Import functions from an object or a module
|
||
* To avoid errors when using one of the imported functions extend module like this:
|
||
*
|
||
* @example
|
||
* // imported_math_functions.ts
|
||
* declare module 'mathjs' {
|
||
* interface MathJsStatic {
|
||
* hello(a: number): number;
|
||
* }
|
||
* }
|
||
*
|
||
* @param object An object with functions to be imported.
|
||
* @param options An object with import options.
|
||
*/
|
||
import(object: ImportObject | ImportObject[], options: ImportOptions): void;
|
||
}
|
||
|
||
/*************************************************************************
|
||
* Factory and Dependencies
|
||
************************************************************************/
|
||
interface FactoryDependencies {
|
||
create: (factories: FactoryFunctionMap, config: ConfigOptions) => Partial<MathJsStatic>;
|
||
factory: <T>(
|
||
name: string,
|
||
dependencies: MathJsFunctionName[],
|
||
create: (injected: Partial<MathJsStatic>) => T,
|
||
meta?: any,
|
||
) => FactoryFunction<T>;
|
||
all: FactoryFunctionMap;
|
||
|
||
typedDependencies: FactoryFunctionMap;
|
||
ResultSetDependencies: FactoryFunctionMap;
|
||
BigNumberDependencies: FactoryFunctionMap;
|
||
ComplexDependencies: FactoryFunctionMap;
|
||
FractionDependencies: FactoryFunctionMap;
|
||
RangeDependencies: FactoryFunctionMap;
|
||
MatrixDependencies: FactoryFunctionMap;
|
||
DenseMatrixDependencies: FactoryFunctionMap;
|
||
cloneDependencies: FactoryFunctionMap;
|
||
isIntegerDependencies: FactoryFunctionMap;
|
||
isNegativeDependencies: FactoryFunctionMap;
|
||
isNumericDependencies: FactoryFunctionMap;
|
||
hasNumericValueDependencies: FactoryFunctionMap;
|
||
isPositiveDependencies: FactoryFunctionMap;
|
||
isZeroDependencies: FactoryFunctionMap;
|
||
isNaNDependencies: FactoryFunctionMap;
|
||
typeOfDependencies: FactoryFunctionMap;
|
||
typeofDependencies: FactoryFunctionMap;
|
||
equalScalarDependencies: FactoryFunctionMap;
|
||
SparseMatrixDependencies: FactoryFunctionMap;
|
||
numberDependencies: FactoryFunctionMap;
|
||
stringDependencies: FactoryFunctionMap;
|
||
booleanDependencies: FactoryFunctionMap;
|
||
bignumberDependencies: FactoryFunctionMap;
|
||
complexDependencies: FactoryFunctionMap;
|
||
fractionDependencies: FactoryFunctionMap;
|
||
matrixDependencies: FactoryFunctionMap;
|
||
splitUnitDependencies: FactoryFunctionMap;
|
||
unaryMinusDependencies: FactoryFunctionMap;
|
||
unaryPlusDependencies: FactoryFunctionMap;
|
||
absDependencies: FactoryFunctionMap;
|
||
applyDependencies: FactoryFunctionMap;
|
||
addScalarDependencies: FactoryFunctionMap;
|
||
cbrtDependencies: FactoryFunctionMap;
|
||
ceilDependencies: FactoryFunctionMap;
|
||
cubeDependencies: FactoryFunctionMap;
|
||
expDependencies: FactoryFunctionMap;
|
||
expm1Dependencies: FactoryFunctionMap;
|
||
fixDependencies: FactoryFunctionMap;
|
||
floorDependencies: FactoryFunctionMap;
|
||
gcdDependencies: FactoryFunctionMap;
|
||
lcmDependencies: FactoryFunctionMap;
|
||
log10Dependencies: FactoryFunctionMap;
|
||
log2Dependencies: FactoryFunctionMap;
|
||
modDependencies: FactoryFunctionMap;
|
||
multiplyScalarDependencies: FactoryFunctionMap;
|
||
multiplyDependencies: FactoryFunctionMap;
|
||
nthRootDependencies: FactoryFunctionMap;
|
||
signDependencies: FactoryFunctionMap;
|
||
sqrtDependencies: FactoryFunctionMap;
|
||
squareDependencies: FactoryFunctionMap;
|
||
subtractDependencies: FactoryFunctionMap;
|
||
xgcdDependencies: FactoryFunctionMap;
|
||
dotMultiplyDependencies: FactoryFunctionMap;
|
||
bitAndDependencies: FactoryFunctionMap;
|
||
bitNotDependencies: FactoryFunctionMap;
|
||
bitOrDependencies: FactoryFunctionMap;
|
||
bitXorDependencies: FactoryFunctionMap;
|
||
argDependencies: FactoryFunctionMap;
|
||
conjDependencies: FactoryFunctionMap;
|
||
imDependencies: FactoryFunctionMap;
|
||
reDependencies: FactoryFunctionMap;
|
||
notDependencies: FactoryFunctionMap;
|
||
orDependencies: FactoryFunctionMap;
|
||
xorDependencies: FactoryFunctionMap;
|
||
concatDependencies: FactoryFunctionMap;
|
||
columnDependencies: FactoryFunctionMap;
|
||
crossDependencies: FactoryFunctionMap;
|
||
diagDependencies: FactoryFunctionMap;
|
||
eyeDependencies: FactoryFunctionMap;
|
||
filterDependencies: FactoryFunctionMap;
|
||
flattenDependencies: FactoryFunctionMap;
|
||
forEachDependencies: FactoryFunctionMap;
|
||
getMatrixDataTypeDependencies: FactoryFunctionMap;
|
||
identityDependencies: FactoryFunctionMap;
|
||
kronDependencies: FactoryFunctionMap;
|
||
mapDependencies: FactoryFunctionMap;
|
||
onesDependencies: FactoryFunctionMap;
|
||
rangeDependencies: FactoryFunctionMap;
|
||
reshapeDependencies: FactoryFunctionMap;
|
||
resizeDependencies: FactoryFunctionMap;
|
||
rowDependencies: FactoryFunctionMap;
|
||
sizeDependencies: FactoryFunctionMap;
|
||
squeezeDependencies: FactoryFunctionMap;
|
||
subsetDependencies: FactoryFunctionMap;
|
||
transposeDependencies: FactoryFunctionMap;
|
||
ctransposeDependencies: FactoryFunctionMap;
|
||
zerosDependencies: FactoryFunctionMap;
|
||
erfDependencies: FactoryFunctionMap;
|
||
modeDependencies: FactoryFunctionMap;
|
||
prodDependencies: FactoryFunctionMap;
|
||
formatDependencies: FactoryFunctionMap;
|
||
printDependencies: FactoryFunctionMap;
|
||
toDependencies: FactoryFunctionMap;
|
||
isPrimeDependencies: FactoryFunctionMap;
|
||
numericDependencies: FactoryFunctionMap;
|
||
divideScalarDependencies: FactoryFunctionMap;
|
||
powDependencies: FactoryFunctionMap;
|
||
roundDependencies: FactoryFunctionMap;
|
||
logDependencies: FactoryFunctionMap;
|
||
log1pDependencies: FactoryFunctionMap;
|
||
nthRootsDependencies: FactoryFunctionMap;
|
||
dotPowDependencies: FactoryFunctionMap;
|
||
dotDivideDependencies: FactoryFunctionMap;
|
||
lsolveDependencies: FactoryFunctionMap;
|
||
usolveDependencies: FactoryFunctionMap;
|
||
leftShiftDependencies: FactoryFunctionMap;
|
||
rightArithShiftDependencies: FactoryFunctionMap;
|
||
rightLogShiftDependencies: FactoryFunctionMap;
|
||
andDependencies: FactoryFunctionMap;
|
||
compareDependencies: FactoryFunctionMap;
|
||
compareNaturalDependencies: FactoryFunctionMap;
|
||
compareTextDependencies: FactoryFunctionMap;
|
||
equalDependencies: FactoryFunctionMap;
|
||
equalTextDependencies: FactoryFunctionMap;
|
||
smallerDependencies: FactoryFunctionMap;
|
||
smallerEqDependencies: FactoryFunctionMap;
|
||
largerDependencies: FactoryFunctionMap;
|
||
largerEqDependencies: FactoryFunctionMap;
|
||
deepEqualDependencies: FactoryFunctionMap;
|
||
unequalDependencies: FactoryFunctionMap;
|
||
partitionSelectDependencies: FactoryFunctionMap;
|
||
sortDependencies: FactoryFunctionMap;
|
||
maxDependencies: FactoryFunctionMap;
|
||
minDependencies: FactoryFunctionMap;
|
||
ImmutableDenseMatrixDependencies: FactoryFunctionMap;
|
||
IndexDependencies: FactoryFunctionMap;
|
||
FibonacciHeapDependencies: FactoryFunctionMap;
|
||
SpaDependencies: FactoryFunctionMap;
|
||
UnitDependencies: FactoryFunctionMap;
|
||
unitDependencies: FactoryFunctionMap;
|
||
sparseDependencies: FactoryFunctionMap;
|
||
createUnitDependencies: FactoryFunctionMap;
|
||
acosDependencies: FactoryFunctionMap;
|
||
acoshDependencies: FactoryFunctionMap;
|
||
acotDependencies: FactoryFunctionMap;
|
||
acothDependencies: FactoryFunctionMap;
|
||
acscDependencies: FactoryFunctionMap;
|
||
acschDependencies: FactoryFunctionMap;
|
||
asecDependencies: FactoryFunctionMap;
|
||
asechDependencies: FactoryFunctionMap;
|
||
asinDependencies: FactoryFunctionMap;
|
||
asinhDependencies: FactoryFunctionMap;
|
||
atanDependencies: FactoryFunctionMap;
|
||
atan2Dependencies: FactoryFunctionMap;
|
||
atanhDependencies: FactoryFunctionMap;
|
||
cosDependencies: FactoryFunctionMap;
|
||
coshDependencies: FactoryFunctionMap;
|
||
cotDependencies: FactoryFunctionMap;
|
||
cothDependencies: FactoryFunctionMap;
|
||
cscDependencies: FactoryFunctionMap;
|
||
cschDependencies: FactoryFunctionMap;
|
||
secDependencies: FactoryFunctionMap;
|
||
sechDependencies: FactoryFunctionMap;
|
||
sinDependencies: FactoryFunctionMap;
|
||
sinhDependencies: FactoryFunctionMap;
|
||
tanDependencies: FactoryFunctionMap;
|
||
tanhDependencies: FactoryFunctionMap;
|
||
setCartesianDependencies: FactoryFunctionMap;
|
||
setDifferenceDependencies: FactoryFunctionMap;
|
||
setDistinctDependencies: FactoryFunctionMap;
|
||
setIntersectDependencies: FactoryFunctionMap;
|
||
setIsSubsetDependencies: FactoryFunctionMap;
|
||
setMultiplicityDependencies: FactoryFunctionMap;
|
||
setPowersetDependencies: FactoryFunctionMap;
|
||
setSizeDependencies: FactoryFunctionMap;
|
||
setSymDifferenceDependencies: FactoryFunctionMap;
|
||
setUnionDependencies: FactoryFunctionMap;
|
||
addDependencies: FactoryFunctionMap;
|
||
hypotDependencies: FactoryFunctionMap;
|
||
normDependencies: FactoryFunctionMap;
|
||
dotDependencies: FactoryFunctionMap;
|
||
traceDependencies: FactoryFunctionMap;
|
||
indexDependencies: FactoryFunctionMap;
|
||
NodeDependencies: FactoryFunctionMap;
|
||
AccessorNodeDependencies: FactoryFunctionMap;
|
||
ArrayNodeDependencies: FactoryFunctionMap;
|
||
AssignmentNodeDependencies: FactoryFunctionMap;
|
||
BlockNodeDependencies: FactoryFunctionMap;
|
||
ConditionalNodeDependencies: FactoryFunctionMap;
|
||
ConstantNodeDependencies: FactoryFunctionMap;
|
||
FunctionAssignmentNodeDependencies: FactoryFunctionMap;
|
||
IndexNodeDependencies: FactoryFunctionMap;
|
||
ObjectNodeDependencies: FactoryFunctionMap;
|
||
OperatorNodeDependencies: FactoryFunctionMap;
|
||
ParenthesisNodeDependencies: FactoryFunctionMap;
|
||
RangeNodeDependencies: FactoryFunctionMap;
|
||
RelationalNodeDependencies: FactoryFunctionMap;
|
||
SymbolNodeDependencies: FactoryFunctionMap;
|
||
FunctionNodeDependencies: FactoryFunctionMap;
|
||
parseDependencies: FactoryFunctionMap;
|
||
compileDependencies: FactoryFunctionMap;
|
||
evaluateDependencies: FactoryFunctionMap;
|
||
evalDependencies: FactoryFunctionMap;
|
||
ParserDependencies: FactoryFunctionMap;
|
||
parserDependencies: FactoryFunctionMap;
|
||
lupDependencies: FactoryFunctionMap;
|
||
qrDependencies: FactoryFunctionMap;
|
||
sluDependencies: FactoryFunctionMap;
|
||
lusolveDependencies: FactoryFunctionMap;
|
||
HelpDependencies: FactoryFunctionMap;
|
||
ChainDependencies: FactoryFunctionMap;
|
||
helpDependencies: FactoryFunctionMap;
|
||
chainDependencies: FactoryFunctionMap;
|
||
detDependencies: FactoryFunctionMap;
|
||
invDependencies: FactoryFunctionMap;
|
||
expmDependencies: FactoryFunctionMap;
|
||
sqrtmDependencies: FactoryFunctionMap;
|
||
divideDependencies: FactoryFunctionMap;
|
||
distanceDependencies: FactoryFunctionMap;
|
||
intersectDependencies: FactoryFunctionMap;
|
||
sumDependencies: FactoryFunctionMap;
|
||
meanDependencies: FactoryFunctionMap;
|
||
medianDependencies: FactoryFunctionMap;
|
||
madDependencies: FactoryFunctionMap;
|
||
varianceDependencies: FactoryFunctionMap;
|
||
varDependencies: FactoryFunctionMap;
|
||
quantileSeqDependencies: FactoryFunctionMap;
|
||
stdDependencies: FactoryFunctionMap;
|
||
combinationsDependencies: FactoryFunctionMap;
|
||
gammaDependencies: FactoryFunctionMap;
|
||
factorialDependencies: FactoryFunctionMap;
|
||
kldivergenceDependencies: FactoryFunctionMap;
|
||
multinomialDependencies: FactoryFunctionMap;
|
||
permutationsDependencies: FactoryFunctionMap;
|
||
pickRandomDependencies: FactoryFunctionMap;
|
||
randomDependencies: FactoryFunctionMap;
|
||
randomIntDependencies: FactoryFunctionMap;
|
||
stirlingS2Dependencies: FactoryFunctionMap;
|
||
bellNumbersDependencies: FactoryFunctionMap;
|
||
catalanDependencies: FactoryFunctionMap;
|
||
compositionDependencies: FactoryFunctionMap;
|
||
simplifyDependencies: FactoryFunctionMap;
|
||
derivativeDependencies: FactoryFunctionMap;
|
||
rationalizeDependencies: FactoryFunctionMap;
|
||
reviverDependencies: FactoryFunctionMap;
|
||
eDependencies: FactoryFunctionMap;
|
||
EDependencies: FactoryFunctionMap;
|
||
falseDependencies: FactoryFunctionMap;
|
||
iDependencies: FactoryFunctionMap;
|
||
InfinityDependencies: FactoryFunctionMap;
|
||
LN10Dependencies: FactoryFunctionMap;
|
||
LN2Dependencies: FactoryFunctionMap;
|
||
LOG10EDependencies: FactoryFunctionMap;
|
||
LOG2EDependencies: FactoryFunctionMap;
|
||
NaNDependencies: FactoryFunctionMap;
|
||
nullDependencies: FactoryFunctionMap;
|
||
phiDependencies: FactoryFunctionMap;
|
||
piDependencies: FactoryFunctionMap;
|
||
PIDependencies: FactoryFunctionMap;
|
||
SQRT1_2Dependencies: FactoryFunctionMap;
|
||
SQRT2Dependencies: FactoryFunctionMap;
|
||
tauDependencies: FactoryFunctionMap;
|
||
trueDependencies: FactoryFunctionMap;
|
||
versionDependencies: FactoryFunctionMap;
|
||
atomicMassDependencies: FactoryFunctionMap;
|
||
avogadroDependencies: FactoryFunctionMap;
|
||
bohrMagnetonDependencies: FactoryFunctionMap;
|
||
bohrRadiusDependencies: FactoryFunctionMap;
|
||
boltzmannDependencies: FactoryFunctionMap;
|
||
classicalElectronRadiusDependencies: FactoryFunctionMap;
|
||
conductanceQuantumDependencies: FactoryFunctionMap;
|
||
coulombDependencies: FactoryFunctionMap;
|
||
deuteronMassDependencies: FactoryFunctionMap;
|
||
efimovFactorDependencies: FactoryFunctionMap;
|
||
electricConstantDependencies: FactoryFunctionMap;
|
||
electronMassDependencies: FactoryFunctionMap;
|
||
elementaryChargeDependencies: FactoryFunctionMap;
|
||
faradayDependencies: FactoryFunctionMap;
|
||
fermiCouplingDependencies: FactoryFunctionMap;
|
||
fineStructureDependencies: FactoryFunctionMap;
|
||
firstRadiationDependencies: FactoryFunctionMap;
|
||
gasConstantDependencies: FactoryFunctionMap;
|
||
gravitationConstantDependencies: FactoryFunctionMap;
|
||
gravityDependencies: FactoryFunctionMap;
|
||
hartreeEnergyDependencies: FactoryFunctionMap;
|
||
inverseConductanceQuantumDependencies: FactoryFunctionMap;
|
||
klitzingDependencies: FactoryFunctionMap;
|
||
loschmidtDependencies: FactoryFunctionMap;
|
||
magneticConstantDependencies: FactoryFunctionMap;
|
||
magneticFluxQuantumDependencies: FactoryFunctionMap;
|
||
molarMassDependencies: FactoryFunctionMap;
|
||
molarMassC12Dependencies: FactoryFunctionMap;
|
||
molarPlanckConstantDependencies: FactoryFunctionMap;
|
||
molarVolumeDependencies: FactoryFunctionMap;
|
||
neutronMassDependencies: FactoryFunctionMap;
|
||
nuclearMagnetonDependencies: FactoryFunctionMap;
|
||
planckChargeDependencies: FactoryFunctionMap;
|
||
planckConstantDependencies: FactoryFunctionMap;
|
||
planckLengthDependencies: FactoryFunctionMap;
|
||
planckMassDependencies: FactoryFunctionMap;
|
||
planckTemperatureDependencies: FactoryFunctionMap;
|
||
planckTimeDependencies: FactoryFunctionMap;
|
||
protonMassDependencies: FactoryFunctionMap;
|
||
quantumOfCirculationDependencies: FactoryFunctionMap;
|
||
reducedPlanckConstantDependencies: FactoryFunctionMap;
|
||
rydbergDependencies: FactoryFunctionMap;
|
||
sackurTetrodeDependencies: FactoryFunctionMap;
|
||
secondRadiationDependencies: FactoryFunctionMap;
|
||
speedOfLightDependencies: FactoryFunctionMap;
|
||
stefanBoltzmannDependencies: FactoryFunctionMap;
|
||
thomsonCrossSectionDependencies: FactoryFunctionMap;
|
||
vacuumImpedanceDependencies: FactoryFunctionMap;
|
||
weakMixingAngleDependencies: FactoryFunctionMap;
|
||
wienDisplacementDependencies: FactoryFunctionMap;
|
||
applyTransformDependencies: FactoryFunctionMap;
|
||
columnTransformDependencies: FactoryFunctionMap;
|
||
filterTransformDependencies: FactoryFunctionMap;
|
||
forEachTransformDependencies: FactoryFunctionMap;
|
||
indexTransformDependencies: FactoryFunctionMap;
|
||
mapTransformDependencies: FactoryFunctionMap;
|
||
maxTransformDependencies: FactoryFunctionMap;
|
||
meanTransformDependencies: FactoryFunctionMap;
|
||
minTransformDependencies: FactoryFunctionMap;
|
||
rangeTransformDependencies: FactoryFunctionMap;
|
||
rowTransformDependencies: FactoryFunctionMap;
|
||
subsetTransformDependencies: FactoryFunctionMap;
|
||
concatTransformDependencies: FactoryFunctionMap;
|
||
stdTransformDependencies: FactoryFunctionMap;
|
||
sumTransformDependencies: FactoryFunctionMap;
|
||
varianceTransformDependencies: FactoryFunctionMap;
|
||
}
|
||
|
||
interface Matrix {
|
||
type: string;
|
||
storage(): string;
|
||
datatype(): string;
|
||
create(data: MathArray, datatype?: string): void;
|
||
density(): number;
|
||
subset(index: Index, replacement?: any, defaultValue?: any): Matrix;
|
||
get(index: number[]): any;
|
||
set(
|
||
index: number[],
|
||
value: any,
|
||
defaultValue?: number | string
|
||
): Matrix;
|
||
resize(
|
||
size: MathArray | Matrix,
|
||
defaultValue?: number | string
|
||
): Matrix;
|
||
clone(): Matrix;
|
||
size(): number[];
|
||
map(
|
||
callback: (a: any, b: number, c: Matrix) => any,
|
||
skipZeros?: boolean
|
||
): Matrix;
|
||
forEach(
|
||
callback: (a: any, b: number, c: Matrix) => void,
|
||
skipZeros?: boolean
|
||
): void;
|
||
toArray(): MathArray | Matrix;
|
||
valueOff(): MathArray | Matrix;
|
||
format(options?: FormatOptions | number | ((value: any) => string)): string;
|
||
toString(): string;
|
||
toJSON(): any;
|
||
diagonal(k?: number | BigNumber): any[];
|
||
swapRows(i: number, j: number): Matrix;
|
||
}
|
||
|
||
interface BigNumber extends Decimal {} // tslint:disable-line no-empty-interface
|
||
|
||
interface Fraction {
|
||
s: number;
|
||
n: number;
|
||
d: number;
|
||
}
|
||
|
||
interface Complex {
|
||
re: number;
|
||
im: number;
|
||
clone(): Complex;
|
||
equals(other: Complex): boolean;
|
||
format(precision?: number): string;
|
||
fromJSON(json: object): Complex;
|
||
fromPolar(polar: object): Complex;
|
||
fromPolar(r: number, phi: number): Complex;
|
||
toJSON(): object;
|
||
toPolar(): PolarCoordinates;
|
||
toString(): string;
|
||
compare(a: Complex, b: Complex): number;
|
||
}
|
||
|
||
interface PolarCoordinates {
|
||
r: number;
|
||
phi: number;
|
||
}
|
||
|
||
interface MathJSON {
|
||
mathjs?: string;
|
||
value: number;
|
||
unit: string;
|
||
fixPrefix?: boolean;
|
||
}
|
||
|
||
interface Unit {
|
||
valueOf(): string;
|
||
clone(): Unit;
|
||
hasBase(base: any): boolean;
|
||
equalBase(unit: Unit): boolean;
|
||
equals(unit: Unit): boolean;
|
||
multiply(unit: Unit): Unit;
|
||
divide(unit: Unit): Unit;
|
||
pow(unit: Unit): Unit;
|
||
abs(unit: Unit): Unit;
|
||
to(unit: string): Unit;
|
||
toNumber(unit: string): number;
|
||
toNumeric(unit: string): number | Fraction | BigNumber;
|
||
toSI(): Unit;
|
||
toString(): string;
|
||
toJSON(): MathJSON;
|
||
formatUnits(): string;
|
||
format(options: FormatOptions): string;
|
||
splitUnit(parts: ReadonlyArray<string | Unit>): Unit[];
|
||
}
|
||
|
||
interface CreateUnitOptions {
|
||
prefixes?: "none" | "short" | "long" | "binary_short" | "binary_long";
|
||
aliases?: string[];
|
||
offset?: number;
|
||
override?: boolean;
|
||
}
|
||
|
||
interface UnitDefinition {
|
||
definition?: string | Unit;
|
||
prefixes?: string;
|
||
offset?: number;
|
||
aliases?: string[];
|
||
}
|
||
|
||
interface Index {} // tslint:disable-line no-empty-interface
|
||
|
||
interface EvalFunction {
|
||
evaluate(scope?: any): any;
|
||
}
|
||
|
||
interface MathNode {
|
||
isNode: boolean;
|
||
isAccessorNode?: boolean;
|
||
isArrayNode?: boolean;
|
||
isAssignmentNode?: boolean;
|
||
isBlockNode?: boolean;
|
||
isConditionalnode?: boolean;
|
||
isConstantNode?: boolean;
|
||
isFunctionAssignmentNode?: boolean;
|
||
isFunctionNode?: boolean;
|
||
isIndexNode?: boolean;
|
||
isObjectNode?: boolean;
|
||
isOperatorNode?: boolean;
|
||
isParenthesisNode?: boolean;
|
||
isRangeNode?: boolean;
|
||
isSymbolNode?: boolean;
|
||
isUpdateNode?: boolean;
|
||
comment?: string;
|
||
content?: MathNode;
|
||
op?: string;
|
||
fn?: string;
|
||
args?: MathNode[];
|
||
type: string;
|
||
name?: string;
|
||
value?: any;
|
||
|
||
/**
|
||
* Create a shallow clone of the node. The node itself is cloned, its
|
||
* childs are not cloned.
|
||
*/
|
||
clone(): MathNode;
|
||
/**
|
||
* Create a deep clone of the node. Both the node as well as all its
|
||
* childs are cloned recursively.
|
||
*/
|
||
cloneDeep(): MathNode;
|
||
/**
|
||
* Compile an expression into optimized JavaScript code. compile returns
|
||
* an object with a function evaluate([scope]) to evaluate. Example:
|
||
*/
|
||
compile(): EvalFunction;
|
||
/**
|
||
* Compile and eval an expression, this is the equivalent of doing
|
||
* node.compile().evaluate(scope). Example:
|
||
*/
|
||
evaluate(expr?: any): any;
|
||
/**
|
||
* Test whether this node equals an other node. Does a deep comparison
|
||
* of the values of both nodes.
|
||
*/
|
||
equals(other: MathNode): boolean;
|
||
/**
|
||
*
|
||
* Filter nodes in an expression tree. The callback function is called
|
||
* as callback(node: MathNode, path: string, parent: MathNode) : boolean
|
||
* for every node in the tree, and must return a boolean. The function
|
||
* filter returns an array with nodes for which the test returned true.
|
||
* Parameter path is a string containing a relative JSON Path.
|
||
*
|
||
* Example:
|
||
*
|
||
* ```
|
||
* var node = math.parse('x^2 + x/4 + 3*y');
|
||
* var filtered = node.filter(function (node) {
|
||
* return node.isSymbolMathNode && node.name == 'x';
|
||
* });
|
||
* // returns an array with two entries: two SymbolMathNodes 'x'
|
||
* ```
|
||
*
|
||
* The callback function is called as callback(node: MathNode, path:
|
||
* string, parent: MathNode) : boolean for every node in the tree, and
|
||
* must return a boolean. The function filter returns an array with
|
||
* nodes for which the test returned true. Parameter path is a string
|
||
* containing a relative JSON Path.
|
||
* @return Returns an array with nodes for which test returned true
|
||
*/
|
||
filter(
|
||
callback: (node: MathNode, path: string, parent: MathNode) => any
|
||
): MathNode[];
|
||
|
||
/**
|
||
* [forEach description]
|
||
*/
|
||
forEach(
|
||
callback: (node: MathNode, path: string, parent: MathNode) => any
|
||
): MathNode[];
|
||
|
||
/**
|
||
* Transform a node. Creates a new MathNode having it’s child's be the
|
||
* results of calling the provided callback function for each of the
|
||
* child's of the original node. The callback function is called as
|
||
* `callback(child: MathNode, path: string, parent: MathNode)` and must
|
||
* return a MathNode. Parameter path is a string containing a relative
|
||
* JSON Path.
|
||
*
|
||
*
|
||
* See also transform, which is a recursive version of map.
|
||
*/
|
||
map(
|
||
callback: (
|
||
node: MathNode,
|
||
path: string,
|
||
parent: MathNode
|
||
) => MathNode
|
||
): MathNode;
|
||
|
||
/**
|
||
* Get a HTML representation of the parsed expression.
|
||
*/
|
||
toHtml(options?: object): string;
|
||
|
||
/**
|
||
* Get a string representation of the parsed expression. This is not
|
||
* exactly the same as the original input.
|
||
*/
|
||
toString(options?: object): string;
|
||
|
||
/**
|
||
* Get a LaTeX representation of the expression.
|
||
*/
|
||
toTex(options?: object): string;
|
||
|
||
/**
|
||
* Recursively transform an expression tree via a transform function.
|
||
* Similar to Array.map, but recursively executed on all nodes in the
|
||
* expression tree. The callback function is a mapping function
|
||
* accepting a node, and returning a replacement for the node or the
|
||
* original node. Function callback is called as callback(node:
|
||
* MathNode, path: string, parent: MathNode) for every node in the tree,
|
||
* and must return a MathNode. Parameter path is a string containing a
|
||
* relative JSON Path.
|
||
*
|
||
* For example, to replace all nodes of type SymbolMathNode having name
|
||
* ‘x’ with a ConstantMathNode with value 3:
|
||
* ```js
|
||
* var node = math.parse('x^2 + 5*x');
|
||
* var transformed = node.transform(function (node, path, parent) {
|
||
* if (node.SymbolMathNode && node.name == 'x') {
|
||
* return new math.expression.node.ConstantMathNode(3);
|
||
* }
|
||
* else {
|
||
* return node;
|
||
* }
|
||
* });
|
||
* transformed.toString(); // returns '(3 ^ 2) + (5 * 3)'
|
||
* ```
|
||
*/
|
||
transform(
|
||
callback: (
|
||
node: MathNode,
|
||
path: string,
|
||
parent: MathNode
|
||
) => MathNode
|
||
): MathNode;
|
||
|
||
/**
|
||
* `traverse(callback)`
|
||
*
|
||
* Recursively traverse all nodes in a node tree. Executes given
|
||
* callback for this node and each of its child nodes. Similar to
|
||
* Array.forEach, except recursive. The callback function is a mapping
|
||
* function accepting a node, and returning a replacement for the node
|
||
* or the original node. Function callback is called as callback(node:
|
||
* MathNode, path: string, parent: MathNode) for every node in the tree.
|
||
* Parameter path is a string containing a relative JSON Path. Example:
|
||
*
|
||
* ```
|
||
* var node = math.parse('3 * x + 2');
|
||
* node.traverse(function (node, path, parent) {
|
||
* switch (node.type) {
|
||
* case 'OperatorMathNode': console.log(node.type, node.op); break;
|
||
* case 'ConstantMathNode': console.log(node.type, node.value); break;
|
||
* case 'SymbolMathNode': console.log(node.type, node.name); break;
|
||
* default: console.log(node.type);
|
||
* }
|
||
* });
|
||
* // outputs:
|
||
* // OperatorMathNode +
|
||
* // OperatorMathNode *
|
||
* // ConstantMathNode 3
|
||
* // SymbolMathNode x
|
||
* // ConstantMathNode 2
|
||
* ```
|
||
*/
|
||
traverse(
|
||
callback: (node: MathNode, path: string, parent: MathNode) => void
|
||
): any;
|
||
}
|
||
|
||
interface Parser {
|
||
evaluate(expr: string): any;
|
||
get(variable: string): any;
|
||
getAll(): { [key: string]: any; };
|
||
set: (variable: string, value: any) => void;
|
||
clear: () => void;
|
||
}
|
||
|
||
interface Distribution {
|
||
random(size: any, min?: any, max?: any): any;
|
||
randomInt(min: any, max?: any): any;
|
||
pickRandom(array: any): any;
|
||
}
|
||
|
||
interface FormatOptions {
|
||
/**
|
||
* Number notation. Choose from: 'fixed' Always use regular number
|
||
* notation. For example '123.40' and '14000000' 'exponential' Always
|
||
* use exponential notation. For example '1.234e+2' and '1.4e+7' 'auto'
|
||
* (default) Regular number notation for numbers having an absolute
|
||
* value between lower and upper bounds, and uses exponential notation
|
||
* elsewhere. Lower bound is included, upper bound is excluded. For
|
||
* example '123.4' and '1.4e7'.
|
||
*/
|
||
notation?: "fixed" | "exponential" | "engineering" | "auto";
|
||
|
||
/**
|
||
* A number between 0 and 16 to round the digits of the number. In case
|
||
* of notations 'exponential' and 'auto', precision defines the total
|
||
* number of significant digits returned and is undefined by default. In
|
||
* case of notation 'fixed', precision defines the number of significant
|
||
* digits after the decimal point, and is 0 by default.
|
||
*/
|
||
precision?: number;
|
||
|
||
/**
|
||
* Exponent determining the lower boundary for formatting a value with
|
||
* an exponent when notation='auto. Default value is -3.
|
||
*/
|
||
lowerExp?: number;
|
||
|
||
/**
|
||
* Exponent determining the upper boundary for formatting a value with
|
||
* an exponent when notation='auto. Default value is 5.
|
||
*/
|
||
upperExp?: number;
|
||
|
||
/**
|
||
* Available values: 'ratio' (default) or 'decimal'. For example
|
||
* format(fraction(1, 3)) will output '1/3' when 'ratio' is configured,
|
||
* and will output 0.(3) when 'decimal' is configured.
|
||
*/
|
||
fraction?: string;
|
||
}
|
||
|
||
interface Help {
|
||
toString(): string;
|
||
toJSON(): string;
|
||
}
|
||
|
||
interface ConfigOptions {
|
||
epsilon?: number;
|
||
matrix?: string;
|
||
number?: string;
|
||
precision?: number;
|
||
parenthesis?: string;
|
||
randomSeed?: string;
|
||
}
|
||
|
||
interface MathJsJson {
|
||
/**
|
||
* Returns reviver function that can be used as reviver in JSON.parse function.
|
||
*/
|
||
reviver(): (key: any, value: any) => any;
|
||
}
|
||
|
||
interface MathJsChain {
|
||
done(): any;
|
||
|
||
/*************************************************************************
|
||
* Construction functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Create a BigNumber, which can store numbers with arbitrary precision.
|
||
* When a matrix is provided, all elements will be converted to
|
||
* BigNumber.
|
||
*/
|
||
bignumber(): MathJsChain;
|
||
|
||
/**
|
||
* Create a boolean or convert a string or number to a boolean. In case
|
||
* of a number, true is returned for non-zero numbers, and false in case
|
||
* of zero. Strings can be 'true' or 'false', or can contain a number.
|
||
* When value is a matrix, all elements will be converted to boolean.
|
||
*/
|
||
boolean(): MathJsChain;
|
||
|
||
/**
|
||
* Create a complex value or convert a value to a complex value.
|
||
* @param im Argument specifying the imaginary part of the complex
|
||
* number
|
||
*/
|
||
complex(im?: number): MathJsChain;
|
||
|
||
/**
|
||
* Create a user-defined unit and register it with the Unit type.
|
||
* @param definition Definition of the unit in terms of existing units.
|
||
* For example, ‘0.514444444 m / s’.
|
||
* @param options (optional) An object containing any of the following
|
||
* properties:</br>- prefixes {string} “none”, “short”, “long”,
|
||
* “binary_short”, or “binary_long”. The default is “none”.</br>-
|
||
* aliases {Array} Array of strings. Example: [‘knots’, ‘kt’,
|
||
* ‘kts’]</br>- offset {Numeric} An offset to apply when converting from
|
||
* the unit. For example, the offset for celsius is 273.15. Default is
|
||
* 0.
|
||
*/
|
||
createUnit(
|
||
definition?: string | UnitDefinition,
|
||
options?: CreateUnitOptions
|
||
): MathJsChain;
|
||
/**
|
||
* Create a user-defined unit and register it with the Unit type.
|
||
* @param options (optional) An object containing any of the following
|
||
* properties:</br>- prefixes {string} “none”, “short”, “long”,
|
||
* “binary_short”, or “binary_long”. The default is “none”.</br>-
|
||
* aliases {Array} Array of strings. Example: [‘knots’, ‘kt’,
|
||
* ‘kts’]</br>- offset {Numeric} An offset to apply when converting from
|
||
* the unit. For example, the offset for celsius is 273.15. Default is
|
||
* 0.
|
||
*/
|
||
createUnit(options?: CreateUnitOptions): MathJsChain;
|
||
|
||
/**
|
||
* Create a fraction convert a value to a fraction.
|
||
* @param denominator Argument specifying the denominator of the
|
||
* fraction
|
||
*/
|
||
fraction(
|
||
denominator?: number | string | MathArray | Matrix
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Create an index. An Index can store ranges having start, step, and
|
||
* end for multiple dimensions. Matrix.get, Matrix.set, and math.subset
|
||
* accept an Index as input.
|
||
*/
|
||
index(): MathJsChain;
|
||
|
||
/**
|
||
* Create a Matrix. The function creates a new math.type.Matrix object
|
||
* from an Array. A Matrix has utility functions to manipulate the data
|
||
* in the matrix, like getting the size and getting or setting values in
|
||
* the matrix. Supported storage formats are 'dense' and 'sparse'.
|
||
*/
|
||
matrix(format?: "sparse" | "dense", dataType?: string): MathJsChain;
|
||
|
||
/**
|
||
* Create a number or convert a string, boolean, or unit to a number.
|
||
* When value is a matrix, all elements will be converted to number.
|
||
* @param valuelessUnit A valueless unit, used to convert a unit to a
|
||
* number
|
||
*/
|
||
number(valuelessUnit?: Unit | string): MathJsChain;
|
||
|
||
/**
|
||
* Create a Sparse Matrix. The function creates a new math.type.Matrix
|
||
* object from an Array. A Matrix has utility functions to manipulate
|
||
* the data in the matrix, like getting the size and getting or setting
|
||
* values in the matrix.
|
||
* @param dataType Sparse Matrix data type
|
||
*/
|
||
sparse(dataType?: string): MathJsChain;
|
||
|
||
/**
|
||
* Split a unit in an array of units whose sum is equal to the original
|
||
* unit.
|
||
* @param parts An array of strings or valueless units
|
||
*/
|
||
splitUnit(parts: Unit[]): MathJsChain;
|
||
|
||
/**
|
||
* Create a string or convert any object into a string. Elements of
|
||
* Arrays and Matrices are processed element wise.
|
||
*/
|
||
string(): MathJsChain;
|
||
|
||
/**
|
||
* Create a unit. Depending on the passed arguments, the function will
|
||
* create and return a new math.type.Unit object. When a matrix is
|
||
* provided, all elements will be converted to units.
|
||
* @param unit The unit to be created
|
||
*/
|
||
unit(unit?: string): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Expression functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Parse and compile an expression. Returns a an object with a function
|
||
* evaluate([scope]) to evaluate the compiled expression.
|
||
*/
|
||
compile(): MathJsChain;
|
||
|
||
/**
|
||
* Evaluate an expression.
|
||
* @param scope Scope to read/write variables
|
||
*/
|
||
evaluate(scope?: object): MathJsChain;
|
||
|
||
/**
|
||
* Retrieve help on a function or data type. Help files are retrieved
|
||
* from the documentation in math.expression.docs.
|
||
*/
|
||
help(): MathJsChain;
|
||
|
||
/**
|
||
* Parse an expression. Returns a node tree, which can be evaluated by
|
||
* invoking node.evaluate();
|
||
* @param options Available options: nodes - a set of custome nodes
|
||
*/
|
||
parse(options?: any): MathJsChain;
|
||
/**
|
||
* @param options Available options: nodes - a set of custome nodes
|
||
*/
|
||
parse(options?: any): MathJsChain;
|
||
|
||
/**
|
||
* Create a parser. The function creates a new math.expression.Parser
|
||
* object.
|
||
*/
|
||
parser(): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Algebra functions
|
||
************************************************************************/
|
||
/**
|
||
* @param variable The variable over which to differentiate
|
||
* @param options There is one option available, simplify, which is true
|
||
* by default. When false, output will not be simplified.
|
||
*/
|
||
derivative(variable: MathNode | string, options?: {simplify: boolean}): MathJsChain;
|
||
|
||
/**
|
||
* Solves the linear equation system by forwards substitution. Matrix
|
||
* must be a lower triangular matrix.
|
||
* @param b A column vector with the b values
|
||
*/
|
||
lsolve(b: Matrix | MathArray): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the Matrix LU decomposition with partial pivoting. Matrix A
|
||
* is decomposed in two matrices (L, U) and a row permutation vector p
|
||
* where A[p,:] = L * U
|
||
*/
|
||
lup(): MathJsChain;
|
||
|
||
/**
|
||
* Solves the linear system A * x = b where A is an [n x n] matrix and b
|
||
* is a [n] column vector.
|
||
* @param b Column Vector
|
||
* @param order The Symbolic Ordering and Analysis order, see slu for
|
||
* details. Matrix must be a SparseMatrix
|
||
* @param threshold Partial pivoting threshold (1 for partial pivoting),
|
||
* see slu for details. Matrix must be a SparseMatrix.
|
||
*/
|
||
lusolve(
|
||
b: Matrix | MathArray,
|
||
order?: number,
|
||
threshold?: number
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the Matrix QR decomposition. Matrix A is decomposed in two
|
||
* matrices (Q, R) where Q is an orthogonal matrix and R is an upper
|
||
* triangular matrix.
|
||
*/
|
||
qr(): MathJsChain;
|
||
|
||
/**
|
||
* Transform a rationalizable expression in a rational fraction. If
|
||
* rational fraction is one variable polynomial then converts the
|
||
* numerator and denominator in canonical form, with decreasing
|
||
* exponents, returning the coefficients of numerator.
|
||
* @param optional scope of expression or true for already evaluated
|
||
* rational expression at input
|
||
* @param detailed optional True if return an object, false if return
|
||
* expression node (default)
|
||
*/
|
||
rationalize(optional?: object | boolean, detailed?: boolean): MathJsChain;
|
||
|
||
/**
|
||
* Simplify an expression tree.
|
||
* @param rules A list of rules are applied to an expression, repeating
|
||
* over the list until no further changes are made. It’s possible to
|
||
* pass a custom set of rules to the function as second argument. A rule
|
||
* can be specified as an object, string, or function.
|
||
* @param scope Scope to variables
|
||
*/
|
||
simplify(
|
||
rules?: Array<({ l: string; r: string } | string | ((node: MathNode) => MathNode))>,
|
||
scope?: object
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the Sparse Matrix LU decomposition with full pivoting.
|
||
* Sparse Matrix A is decomposed in two matrices (L, U) and two
|
||
* permutation vectors (pinv, q) where P * A * Q = L * U
|
||
* @param order The Symbolic Ordering and Analysis order: 0 - Natural
|
||
* ordering, no permutation vector q is returned 1 - Matrix must be
|
||
* square, symbolic ordering and analisis is performed on M = A + A' 2 -
|
||
* Symbolic ordering and analysis is performed on M = A' * A. Dense
|
||
* columns from A' are dropped, A recreated from A'. This is appropriate
|
||
* for LU factorization of non-symmetric matrices. 3 - Symbolic ordering
|
||
* and analysis is performed on M = A' * A. This is best used for LU
|
||
* factorization is matrix M has no dense rows. A dense row is a row
|
||
* with more than 10*sqr(columns) entries.
|
||
* @param threshold Partial pivoting threshold (1 for partial pivoting)
|
||
*/
|
||
slu(order: number, threshold: number): MathJsChain;
|
||
|
||
/**
|
||
* Solves the linear equation system by backward substitution. Matrix
|
||
* must be an upper triangular matrix. U * x = b
|
||
* @param b A column vector with the b values
|
||
*/
|
||
usolve(b: Matrix | MathArray): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Arithmetic functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Calculate the absolute value of a number. For matrices, the function
|
||
* is evaluated element wise.
|
||
*/
|
||
abs(): MathJsChain;
|
||
|
||
/**
|
||
* Add two values, x + y. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param y Second value to add
|
||
*/
|
||
add(y: MathType): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the cubic root of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param allRoots Optional, false by default. Only applicable when x is
|
||
* a number or complex number. If true, all complex roots are returned,
|
||
* if false (default) the principal root is returned.
|
||
*/
|
||
cbrt(allRoots?: boolean): MathJsChain;
|
||
|
||
/**
|
||
* Round a value towards plus infinity If x is complex, both real and
|
||
* imaginary part are rounded towards plus infinity. For matrices, the
|
||
* function is evaluated element wise.
|
||
*/
|
||
ceil(): MathJsChain;
|
||
|
||
/**
|
||
* Compute the cube of a value, x * x * x. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
cube(): MathJsChain;
|
||
|
||
/**
|
||
* Divide two values, x / y. To divide matrices, x is multiplied with
|
||
* the inverse of y: x * inv(y).
|
||
* @param y Denominator
|
||
*/
|
||
divide(y: MathType): MathJsChain;
|
||
|
||
/**
|
||
* Divide two matrices element wise. The function accepts both matrices
|
||
* and scalar values.
|
||
* @param y Denominator
|
||
*/
|
||
dotDivide(y: MathType): MathJsChain;
|
||
|
||
/**
|
||
* Multiply two matrices element wise. The function accepts both
|
||
* matrices and scalar values.
|
||
* @param y Right hand value
|
||
*/
|
||
dotMultiply(y: MathType): MathJsChain;
|
||
|
||
/**
|
||
* Calculates the power of x to y element wise.
|
||
* @param y The exponent
|
||
*/
|
||
dotPow(y: MathType): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the exponent of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
exp(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the value of subtracting 1 from the exponential value. For
|
||
* matrices, the function is evaluated element wise.
|
||
*/
|
||
expm1(): MathJsChain;
|
||
|
||
/**
|
||
* Round a value towards zero. For matrices, the function is evaluated
|
||
* element wise.
|
||
*/
|
||
fix(): MathJsChain;
|
||
|
||
/**
|
||
* Round a value towards minus infinity. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
floor(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the greatest common divisor for two or more values or
|
||
* arrays. For matrices, the function is evaluated element wise.
|
||
*/
|
||
gcd(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hypotenusa of a list with values. The hypotenusa is
|
||
* defined as: hypot(a, b, c, ...) = sqrt(a^2 + b^2 + c^2 + ...) For
|
||
* matrix input, the hypotenusa is calculated for all values in the
|
||
* matrix.
|
||
*/
|
||
hypot(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the least common multiple for two or more values or arrays.
|
||
* lcm is defined as: lcm(a, b) = abs(a * b) / gcd(a, b) For matrices,
|
||
* the function is evaluated element wise.
|
||
* @param b An integer number
|
||
*/
|
||
lcm(b: number | BigNumber | MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the logarithm of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param base Optional base for the logarithm. If not provided, the
|
||
* natural logarithm of x is calculated. Default value: e.
|
||
*/
|
||
log(base?: number | BigNumber | Complex): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the 10-base of a value. This is the same as calculating
|
||
* log(x, 10). For matrices, the function is evaluated element wise.
|
||
*/
|
||
log10(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the logarithm of a value+1. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
log1p(base?: number | BigNumber | Complex): MathJsChain;
|
||
/**
|
||
* Calculate the 2-base of a value. This is the same as calculating
|
||
* log(x, 2). For matrices, the function is evaluated element wise.
|
||
*/
|
||
log2(): MathJsChain;
|
||
/**
|
||
* Calculates the modulus, the remainder of an integer division. For
|
||
* matrices, the function is evaluated element wise. The modulus is
|
||
* defined as: x - y * floor(x / y)
|
||
* @see http://en.wikipedia.org/wiki/Modulo_operation.
|
||
* @param y Divisor
|
||
*/
|
||
mod(y: number | BigNumber | Fraction | MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Multiply two values, x * y. The result is squeezed. For matrices, the
|
||
* matrix product is calculated.
|
||
* @param y The second value to multiply
|
||
*/
|
||
multiply(y: MathType): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the norm of a number, vector or matrix. The second
|
||
* parameter p is optional. If not provided, it defaults to 2.
|
||
* @param p Vector space. Supported numbers include Infinity and
|
||
* -Infinity. Supported strings are: 'inf', '-inf', and 'fro' (The
|
||
* Frobenius norm) Default value: 2.
|
||
*/
|
||
norm(p?: number | BigNumber | string): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the nth root of a value. The principal nth root of a
|
||
* positive real number A, is the positive real solution of the equation
|
||
* x^root = A For matrices, the function is evaluated element wise.
|
||
* @param root The root. Default value: 2.
|
||
*/
|
||
nthRoot(root?: number | BigNumber): MathJsChain;
|
||
|
||
/**
|
||
* Calculates the power of x to y, x ^ y. Matrix exponentiation is
|
||
* supported for square matrices x, and positive integer exponents y.
|
||
* @param y The exponent
|
||
*/
|
||
pow(): MathJsChain;
|
||
|
||
/**
|
||
* Round a value towards the nearest integer. For matrices, the function
|
||
* is evaluated element wise.
|
||
* @param n Number of decimals Default value: 0.
|
||
*/
|
||
round(n?: number | BigNumber | MathArray): MathJsChain;
|
||
|
||
/**
|
||
* Compute the sign of a value. The sign of a value x is: 1 when x > 1
|
||
* -1 when x < 0 0 when x == 0 For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param x The number for which to determine the sign
|
||
* @returns The sign of x
|
||
*/
|
||
sign(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the square root of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
sqrt(): MathJsChain;
|
||
|
||
/**
|
||
* Compute the square of a value, x * x. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
square(): MathJsChain;
|
||
|
||
/**
|
||
* Subtract two values, x - y. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param y Value to subtract from x
|
||
*/
|
||
subtract(y: MathType): MathJsChain;
|
||
|
||
/**
|
||
* Inverse the sign of a value, apply a unary minus operation. For
|
||
* matrices, the function is evaluated element wise. Boolean values and
|
||
* strings will be converted to a number. For complex numbers, both real
|
||
* and complex value are inverted.
|
||
*/
|
||
unaryMinus(): MathJsChain;
|
||
|
||
/**
|
||
* Unary plus operation. Boolean values and strings will be converted to
|
||
* a number, numeric values will be returned as is. For matrices, the
|
||
* function is evaluated element wise.
|
||
*/
|
||
unaryPlus(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the extended greatest common divisor for two values. See
|
||
* http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm.
|
||
* @param b An integer number
|
||
*/
|
||
xgcd(b: number | BigNumber): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Bitwise functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Bitwise AND two values, x & y. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param y Second value to and
|
||
*/
|
||
bitAnd(y: number | BigNumber | MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Bitwise NOT value, ~x. For matrices, the function is evaluated
|
||
* element wise. For units, the function is evaluated on the best prefix
|
||
* base.
|
||
*/
|
||
bitNot(): MathJsChain;
|
||
|
||
/**
|
||
* Bitwise OR two values, x | y. For matrices, the function is evaluated
|
||
* element wise. For units, the function is evaluated on the lowest
|
||
* print base.
|
||
* @param y Second value to or
|
||
*/
|
||
bitOr(y: number | BigNumber | MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Bitwise XOR two values, x ^ y. For matrices, the function is
|
||
* evaluated element wise.
|
||
* @param y Second value to xor
|
||
*/
|
||
bitXor(y: number | BigNumber | MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Bitwise left logical shift of a value x by y number of bits, x << y.
|
||
* For matrices, the function is evaluated element wise. For units, the
|
||
* function is evaluated on the best prefix base.
|
||
* @param y Amount of shifts
|
||
*/
|
||
leftShift(y: number | BigNumber): MathJsChain;
|
||
|
||
/**
|
||
* Bitwise right arithmetic shift of a value x by y number of bits, x >>
|
||
* y. For matrices, the function is evaluated element wise. For units,
|
||
* the function is evaluated on the best prefix base.
|
||
* @param y Amount of shifts
|
||
*/
|
||
rightArithShift(y: number | BigNumber): MathJsChain;
|
||
|
||
/**
|
||
* Bitwise right logical shift of value x by y number of bits, x >>> y.
|
||
* For matrices, the function is evaluated element wise. For units, the
|
||
* function is evaluated on the best prefix base.
|
||
* @param y Amount of shifts
|
||
*/
|
||
rightLogShift(y: number): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Combinatorics functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* The Bell Numbers count the number of partitions of a set. A partition
|
||
* is a pairwise disjoint subset of S whose union is S. bellNumbers only
|
||
* takes integer arguments. The following condition must be enforced: n
|
||
* >= 0
|
||
*/
|
||
bellNumbers(): MathJsChain;
|
||
|
||
/**
|
||
* The Catalan Numbers enumerate combinatorial structures of many
|
||
* different types. catalan only takes integer arguments. The following
|
||
* condition must be enforced: n >= 0
|
||
*/
|
||
catalan(): MathJsChain;
|
||
|
||
/**
|
||
* The composition counts of n into k parts. Composition only takes
|
||
* integer arguments. The following condition must be enforced: k <= n.
|
||
* @param k Number of objects in the subset
|
||
*/
|
||
composition(k: number | BigNumber): MathJsChain;
|
||
|
||
/**
|
||
* The Stirling numbers of the second kind, counts the number of ways to
|
||
* partition a set of n labelled objects into k nonempty unlabelled
|
||
* subsets. stirlingS2 only takes integer arguments. The following
|
||
* condition must be enforced: k <= n. If n = k or k = 1, then s(n,k) =
|
||
* 1
|
||
* @param k Number of objects in the subset
|
||
*/
|
||
stirlingS2(k: number | BigNumber): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Complex functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Compute the argument of a complex value. For a complex number a + bi,
|
||
* the argument is computed as atan2(b, a). For matrices, the function
|
||
* is evaluated element wise.
|
||
*/
|
||
arg(): MathJsChain;
|
||
|
||
/**
|
||
* Compute the complex conjugate of a complex value. If x = a+bi, the
|
||
* complex conjugate of x is a - bi. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
conj(): MathJsChain;
|
||
|
||
/**
|
||
* Get the imaginary part of a complex number. For a complex number a +
|
||
* bi, the function returns b. For matrices, the function is evaluated
|
||
* element wise.
|
||
*/
|
||
im(): MathJsChain;
|
||
|
||
/**
|
||
* Get the real part of a complex number. For a complex number a + bi,
|
||
* the function returns a. For matrices, the function is evaluated
|
||
* element wise.
|
||
*/
|
||
re(): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Geometry functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Calculates: The eucledian distance between two points in 2 and 3
|
||
* dimensional spaces. Distance between point and a line in 2 and 3
|
||
* dimensional spaces. Pairwise distance between a set of 2D or 3D
|
||
* points NOTE: When substituting coefficients of a line(a, b and c),
|
||
* use ax + by + c = 0 instead of ax + by = c For parametric equation of
|
||
* a 3D line, x0, y0, z0, a, b, c are from: (x−x0, y−y0, z−z0) = t(a, b,
|
||
* c)
|
||
* @param y Coordinates of the second point
|
||
*/
|
||
distance(y: MathArray | Matrix | object): MathJsChain;
|
||
|
||
/**
|
||
* Calculates the point of intersection of two lines in two or three
|
||
* dimensions and of a line and a plane in three dimensions. The inputs
|
||
* are in the form of arrays or 1 dimensional matrices. The line
|
||
* intersection functions return null if the lines do not meet. Note:
|
||
* Fill the plane coefficients as x + y + z = c and not as x + y + z + c
|
||
* = 0.
|
||
* @param x Co-ordinates of second end-point of first line
|
||
* @param y Co-ordinates of first end-point of second line OR
|
||
* Coefficients of the plane's equation
|
||
* @param z Co-ordinates of second end-point of second line OR null if
|
||
* the calculation is for line and plane
|
||
*/
|
||
intersect(
|
||
x: MathArray | Matrix,
|
||
y: MathArray | Matrix,
|
||
z: MathArray | Matrix
|
||
): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Logical functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Logical and. Test whether two values are both defined with a
|
||
* nonzero/nonempty value. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param y Second value to and
|
||
*/
|
||
and(
|
||
y: number | BigNumber | Complex | Unit | MathArray | Matrix
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Logical not. Flips boolean value of a given parameter. For matrices,
|
||
* the function is evaluated element wise.
|
||
*/
|
||
not(): MathJsChain;
|
||
|
||
/**
|
||
* Logical or. Test if at least one value is defined with a
|
||
* nonzero/nonempty value. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param y Second value to or
|
||
*/
|
||
or(
|
||
y: number | BigNumber | Complex | Unit | MathArray | Matrix
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Logical xor. Test whether one and only one value is defined with a
|
||
* nonzero/nonempty value. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param y Second value to xor
|
||
*/
|
||
xor(
|
||
y: number | BigNumber | Complex | Unit | MathArray | Matrix
|
||
): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Matrix functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Concatenate two or more matrices. dim: number is a zero-based
|
||
* dimension over which to concatenate the matrices. By default the last
|
||
* dimension of the matrices.
|
||
*/
|
||
concat(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the cross product for two vectors in three dimensional
|
||
* space. The cross product of A = [a1, a2, a3] and B =[b1, b2, b3] is
|
||
* defined as: cross(A, B) = [ a2 * b3 - a3 * b2, a3 * b1 - a1 * b3, a1
|
||
* * b2 - a2 * b1 ]
|
||
* @param y Second vector
|
||
*/
|
||
cross(y: MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the determinant of a matrix.
|
||
*/
|
||
det(): MathJsChain;
|
||
|
||
/**
|
||
* Create a diagonal matrix or retrieve the diagonal of a matrix. When x
|
||
* is a vector, a matrix with vector x on the diagonal will be returned.
|
||
* When x is a two dimensional matrix, the matrixes kth diagonal will be
|
||
* returned as vector. When k is positive, the values are placed on the
|
||
* super diagonal. When k is negative, the values are placed on the sub
|
||
* diagonal.
|
||
* @param k The diagonal where the vector will be filled in or
|
||
* retrieved. Default value: 0.
|
||
* @param format The matrix storage format. Default value: 'dense'.
|
||
*/
|
||
diag(format?: string): MathJsChain;
|
||
diag(k: number | BigNumber, format?: string): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the dot product of two vectors. The dot product of A = [a1,
|
||
* a2, a3, ..., an] and B = [b1, b2, b3, ..., bn] is defined as: dot(A,
|
||
* B) = a1 * b1 + a2 * b2 + a3 * b3 + ... + an * bn
|
||
* @param y Second vector
|
||
*/
|
||
dot(y: MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Compute the matrix exponential, expm(A) = e^A. The matrix must be
|
||
* square. Not to be confused with exp(a), which performs element-wise
|
||
* exponentiation. The exponential is calculated using the Padé
|
||
* approximant with scaling and squaring; see “Nineteen Dubious Ways to
|
||
* Compute the Exponential of a Matrix,” by Moler and Van Loan.
|
||
*/
|
||
expm(): MathJsChain;
|
||
|
||
/**
|
||
* Create a 2-dimensional identity matrix with size m x n or n x n. The
|
||
* matrix has ones on the diagonal and zeros elsewhere.
|
||
* @param format The Matrix storage format
|
||
*/
|
||
identity(format?: string): MathJsChain;
|
||
/**
|
||
* @param n The y dimension for the matrix
|
||
* @param format The Matrix storage format
|
||
*/
|
||
identity(n: number, format?: string): MathJsChain;
|
||
|
||
/**
|
||
* Filter the items in an array or one dimensional matrix.
|
||
*/
|
||
filter(test: ((value: any, index: any, matrix: Matrix | MathArray) => Matrix | MathArray)| RegExp): MathJsChain;
|
||
|
||
/**
|
||
* Flatten a multi dimensional matrix into a single dimensional matrix.
|
||
*/
|
||
flatten(): MathJsChain;
|
||
|
||
/**
|
||
* Iterate over all elements of a matrix/array, and executes the given
|
||
* callback function.
|
||
*/
|
||
forEach(callback: ((value: any, index: any, matrix: Matrix | MathArray) => void)): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the inverse of a square matrix.
|
||
*/
|
||
inv(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the kronecker product of two matrices or vectors
|
||
* @param y Second vector
|
||
*/
|
||
kron(y: Matrix | MathArray): MathJsChain;
|
||
|
||
/**
|
||
* Iterate over all elements of a matrix/array, and executes the given
|
||
* callback function.
|
||
* @param callback The callback function is invoked with three
|
||
* parameters: the value of the element, the index of the element, and
|
||
* the Matrix/array being traversed.
|
||
*/
|
||
map(callback: ((value: any, index: any, matrix: Matrix | MathArray) => Matrix | MathArray)): MathJsChain;
|
||
|
||
/**
|
||
* Create a matrix filled with ones. The created matrix can have one or
|
||
* multiple dimensions.
|
||
* @param format The matrix storage format
|
||
*/
|
||
ones(format?: string): MathJsChain;
|
||
/**
|
||
* @param format The matrix storage format
|
||
*/
|
||
ones(n: number, format?: string): MathJsChain;
|
||
/**
|
||
* Partition-based selection of an array or 1D matrix. Will find the kth
|
||
* smallest value, and mutates the input array. Uses Quickselect.
|
||
* @param k The kth smallest value to be retrieved; zero-based index
|
||
* @param compare An optional comparator function. The function is
|
||
* called as compare(a, b), and must return 1 when a > b, -1 when a < b,
|
||
* and 0 when a == b. Default value: 'asc'.
|
||
*/
|
||
partitionSelect(
|
||
k: number,
|
||
compare?: "asc" | "desc" | ((a: any, b: any) => number)
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Create an array from a range. By default, the range end is excluded.
|
||
* This can be customized by providing an extra parameter includeEnd.
|
||
* @param end End of the range, excluded by default, included when
|
||
* parameter includeEnd=true
|
||
* @param step Step size. Default value is 1.
|
||
* @param includeEnd: Option to specify whether to include the end or
|
||
* not. False by default
|
||
*/
|
||
range(includeEnd?: boolean): Matrix;
|
||
range(end: number | BigNumber, includeEnd?: boolean): MathJsChain;
|
||
range(
|
||
end: number | BigNumber,
|
||
step: number | BigNumber,
|
||
includeEnd?: boolean
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Reshape a multi dimensional array to fit the specified dimensions
|
||
* @param sizes One dimensional array with integral sizes for each
|
||
* dimension
|
||
*/
|
||
reshape(sizes: number[]): MathJsChain;
|
||
|
||
/**
|
||
* Resize a matrix
|
||
* @param size One dimensional array with numbers
|
||
* @param defaultValue Zero by default, except in case of a string, in
|
||
* that case defaultValue = ' ' Default value: 0.
|
||
*/
|
||
resize(
|
||
size: MathArray | Matrix,
|
||
defaultValue?: number | string
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the size of a matrix or scalar.
|
||
*/
|
||
size(): MathJsChain;
|
||
|
||
/**
|
||
* Sort the items in a matrix
|
||
* @param compare An optional _comparator function or name. The function
|
||
* is called as compare(a, b), and must return 1 when a > b, -1 when a <
|
||
* b, and 0 when a == b. Default value: ‘asc’
|
||
*/
|
||
sort(compare: ((a: any, b: any) => number) | "asc" | "desc" | "natural"): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the principal square root of a square matrix. The principal
|
||
* square root matrix X of another matrix A is such that X * X = A.
|
||
*/
|
||
sqrtm(): MathJsChain;
|
||
|
||
/**
|
||
* Squeeze a matrix, remove inner and outer singleton dimensions from a
|
||
* matrix.
|
||
*/
|
||
squeeze(): MathJsChain;
|
||
|
||
/**
|
||
* Get or set a subset of a matrix or string.
|
||
* @param index An index containing ranges for each dimension
|
||
* @param replacement An array, matrix, or scalar. If provided, the
|
||
* subset is replaced with replacement. If not provided, the subset is
|
||
* returned
|
||
* @param defaultValue Default value, filled in on new entries when the
|
||
* matrix is resized. If not provided, math.matrix elements will be left
|
||
* undefined. Default value: undefined.
|
||
*/
|
||
subset(
|
||
index: Index,
|
||
replacement?: any,
|
||
defaultValue?: any
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the trace of a matrix: the sum of the elements on the main
|
||
* diagonal of a square matrix.
|
||
*/
|
||
trace(): MathJsChain;
|
||
|
||
/**
|
||
* Transpose a matrix. All values of the matrix are reflected over its
|
||
* main diagonal. Only two dimensional matrices are supported.
|
||
*/
|
||
transpose(): MathJsChain;
|
||
|
||
/**
|
||
* Create a matrix filled with zeros. The created matrix can have one or
|
||
* multiple dimensions.
|
||
* @param format The matrix storage format
|
||
* @returns A matrix filled with zeros
|
||
*/
|
||
zeros(format?: string): MathJsChain;
|
||
/**
|
||
* @param n The y dimension of the matrix
|
||
* @param format The matrix storage format
|
||
*/
|
||
zeros(n: number, format?: string): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Probability functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Compute the number of ways of picking k unordered outcomes from n
|
||
* possibilities. Combinations only takes integer arguments. The
|
||
* following condition must be enforced: k <= n.
|
||
* @param k Number of objects in the subset
|
||
*/
|
||
combinations(k: number | BigNumber): MathJsChain;
|
||
|
||
/**
|
||
* Compute the factorial of a value Factorial only supports an integer
|
||
* value as argument. For matrices, the function is evaluated element
|
||
* wise.
|
||
*/
|
||
factorial(): MathJsChain;
|
||
|
||
/**
|
||
* Compute the gamma function of a value using Lanczos approximation for
|
||
* small values, and an extended Stirling approximation for large
|
||
* values. For matrices, the function is evaluated element wise.
|
||
*/
|
||
gamma(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the Kullback-Leibler (KL) divergence between two
|
||
* distributions
|
||
* @param p Second vector
|
||
*/
|
||
kldivergence(p: MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Multinomial Coefficients compute the number of ways of picking a1,
|
||
* a2, ..., ai unordered outcomes from n possibilities. multinomial
|
||
* takes one array of integers as an argument. The following condition
|
||
* must be enforced: every ai <= 0
|
||
*/
|
||
multinomial(): MathJsChain;
|
||
|
||
/**
|
||
* Compute the number of ways of obtaining an ordered subset of k
|
||
* elements from a set of n elements. Permutations only takes integer
|
||
* arguments. The following condition must be enforced: k <= n.
|
||
* @param k The number of objects in the subset
|
||
*/
|
||
permutations(k?: number | BigNumber): MathJsChain;
|
||
|
||
/**
|
||
* Random pick a value from a one dimensional array. Array element is
|
||
* picked using a random function with uniform distribution.
|
||
* @param number An int or float
|
||
* @param weights An array of ints or floats
|
||
*/
|
||
pickRandom(number?: number, weights?: number[]): MathJsChain;
|
||
|
||
/**
|
||
* Return a random number larger or equal to min and smaller than max
|
||
* using a uniform distribution.
|
||
* @param min Minimum boundary for the random value, included
|
||
* @param max Maximum boundary for the random value, excluded
|
||
*/
|
||
// tslint:disable-next-line unified-signatures
|
||
random(max?: number): MathJsChain;
|
||
// tslint:disable-next-line unified-signatures
|
||
random(min: number, max: number): MathJsChain;
|
||
|
||
/**
|
||
* Return a random integer number larger or equal to min and smaller
|
||
* than max using a uniform distribution.
|
||
* @param min Minimum boundary for the random value, included
|
||
* @param max Maximum boundary for the random value, excluded
|
||
*/
|
||
// tslint:disable-next-line unified-signatures
|
||
randomInt(max?: number): MathJsChain;
|
||
// tslint:disable-next-line unified-signatures
|
||
randomInt(min: number, max: number): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Relational functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Compare two values. Returns 1 when x > y, -1 when x < y, and 0 when x
|
||
* == y. x and y are considered equal when the relative difference
|
||
* between x and y is smaller than the configured epsilon. The function
|
||
* cannot be used to compare values smaller than approximately 2.22e-16.
|
||
* For matrices, the function is evaluated element wise.
|
||
* @param y Second value to compare
|
||
*/
|
||
compare(y: MathType | string): MathJsChain;
|
||
|
||
/**
|
||
* Compare two values of any type in a deterministic, natural way. For
|
||
* numeric values, the function works the same as math.compare. For
|
||
* types of values that can’t be compared mathematically, the function
|
||
* compares in a natural way.
|
||
* @param y Second value to compare
|
||
*/
|
||
compareNatural(y: any): MathJsChain;
|
||
|
||
/**
|
||
* Compare two strings lexically. Comparison is case sensitive. Returns
|
||
* 1 when x > y, -1 when x < y, and 0 when x == y. For matrices, the
|
||
* function is evaluated element wise.
|
||
* @param y Second string to compare
|
||
*/
|
||
compareText(y: string | MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Test element wise whether two matrices are equal. The function
|
||
* accepts both matrices and scalar values.
|
||
* @param y Second amtrix to compare
|
||
*/
|
||
deepEqual(y: MathType): MathJsChain;
|
||
|
||
/**
|
||
* Test whether two values are equal.
|
||
*
|
||
* The function tests whether the relative difference between x and y is
|
||
* smaller than the configured epsilon. The function cannot be used to
|
||
* compare values smaller than approximately 2.22e-16. For matrices, the
|
||
* function is evaluated element wise. In case of complex numbers, x.re
|
||
* must equal y.re, and x.im must equal y.im. Values null and undefined
|
||
* are compared strictly, thus null is only equal to null and nothing
|
||
* else, and undefined is only equal to undefined and nothing else.
|
||
* @param y Second value to compare
|
||
*/
|
||
equal(y: MathType | string): MathJsChain;
|
||
|
||
/**
|
||
* Check equality of two strings. Comparison is case sensitive. For
|
||
* matrices, the function is evaluated element wise.
|
||
* @param y Second string to compare
|
||
*/
|
||
equalText(y: string | MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Test whether value x is larger than y. The function returns true when
|
||
* x is larger than y and the relative difference between x and y is
|
||
* larger than the configured epsilon. The function cannot be used to
|
||
* compare values smaller than approximately 2.22e-16. For matrices, the
|
||
* function is evaluated element wise.
|
||
* @param y Second value to compare
|
||
*/
|
||
larger(y: MathType | string): MathJsChain;
|
||
|
||
/**
|
||
* Test whether value x is larger or equal to y. The function returns
|
||
* true when x is larger than y or the relative difference between x and
|
||
* y is smaller than the configured epsilon. The function cannot be used
|
||
* to compare values smaller than approximately 2.22e-16. For matrices,
|
||
* the function is evaluated element wise.
|
||
* @param y Second value to vcompare
|
||
*/
|
||
largerEq(y: MathType | string): MathJsChain;
|
||
|
||
/**
|
||
* Test whether value x is smaller than y. The function returns true
|
||
* when x is smaller than y and the relative difference between x and y
|
||
* is smaller than the configured epsilon. The function cannot be used
|
||
* to compare values smaller than approximately 2.22e-16. For matrices,
|
||
* the function is evaluated element wise.
|
||
* @param y Second value to vcompare
|
||
*/
|
||
smaller(y: MathType | string): MathJsChain;
|
||
|
||
/**
|
||
* Test whether value x is smaller or equal to y. The function returns
|
||
* true when x is smaller than y or the relative difference between x
|
||
* and y is smaller than the configured epsilon. The function cannot be
|
||
* used to compare values smaller than approximately 2.22e-16. For
|
||
* matrices, the function is evaluated element wise.
|
||
* @param y Second value to compare
|
||
*/
|
||
smallerEq(y: MathType | string): MathJsChain;
|
||
|
||
/**
|
||
* Test whether two values are unequal. The function tests whether the
|
||
* relative difference between x and y is larger than the configured
|
||
* epsilon. The function cannot be used to compare values smaller than
|
||
* approximately 2.22e-16. For matrices, the function is evaluated
|
||
* element wise. In case of complex numbers, x.re must unequal y.re, or
|
||
* x.im must unequal y.im. Values null and undefined are compared
|
||
* strictly, thus null is unequal with everything except null, and
|
||
* undefined is unequal with everything except undefined.
|
||
* @param y Second value to vcompare
|
||
*/
|
||
unequal(y: MathType | string): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Set functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Create the cartesian product of two (multi)sets. Multi-dimension
|
||
* arrays will be converted to single-dimension arrays before the
|
||
* operation.
|
||
* @param a2 A (multi)set
|
||
*/
|
||
setCartesian(a2: MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Create the difference of two (multi)sets: every element of set1, that
|
||
* is not the element of set2. Multi-dimension arrays will be converted
|
||
* to single-dimension arrays before the operation
|
||
* @param a2 A (multi)set
|
||
*/
|
||
setDifference(a2: MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Collect the distinct elements of a multiset. A multi-dimension array
|
||
* will be converted to a single-dimension array before the operation.
|
||
*/
|
||
setDistinct(): MathJsChain;
|
||
|
||
/**
|
||
* Create the intersection of two (multi)sets. Multi-dimension arrays
|
||
* will be converted to single-dimension arrays before the operation.
|
||
* @param a2 A (multi)set
|
||
*/
|
||
setIntersect(a2: MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Check whether a (multi)set is a subset of another (multi)set. (Every
|
||
* element of set1 is the element of set2.) Multi-dimension arrays will
|
||
* be converted to single-dimension arrays before the operation.
|
||
* @param a2 A (multi)set
|
||
*/
|
||
setIsSubset(a2: MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Count the multiplicity of an element in a multiset. A multi-dimension
|
||
* array will be converted to a single-dimension array before the
|
||
* operation.
|
||
* @param a A multiset
|
||
*/
|
||
setMultiplicity(a: MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Create the powerset of a (multi)set. (The powerset contains very
|
||
* possible subsets of a (multi)set.) A multi-dimension array will be
|
||
* converted to a single-dimension array before the operation.
|
||
*/
|
||
setPowerset(): MathJsChain;
|
||
|
||
/**
|
||
* Count the number of elements of a (multi)set. When a second parameter
|
||
* is ‘true’, count only the unique values. A multi-dimension array will
|
||
* be converted to a single-dimension array before the operation.
|
||
*/
|
||
setSize(): MathJsChain;
|
||
|
||
/**
|
||
* Create the symmetric difference of two (multi)sets. Multi-dimension
|
||
* arrays will be converted to single-dimension arrays before the
|
||
* operation.
|
||
* @param a2 A (multi)set
|
||
*/
|
||
setSymDifference(a2: MathArray | Matrix): MathJsChain;
|
||
|
||
/**
|
||
* Create the union of two (multi)sets. Multi-dimension arrays will be
|
||
* converted to single-dimension arrays before the operation.
|
||
* @param a2 A (multi)set
|
||
*/
|
||
setUnion(a2: MathArray | Matrix): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Special functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Compute the erf function of a value using a rational Chebyshev
|
||
* approximations for different intervals of x.
|
||
*/
|
||
erf(): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Statistics functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Compute the median absolute deviation of a matrix or a list with
|
||
* values. The median absolute deviation is defined as the median of the
|
||
* absolute deviations from the median.
|
||
*/
|
||
mad(): MathJsChain;
|
||
|
||
/**
|
||
* Compute the maximum value of a matrix or a list with values. In case
|
||
* of a multi dimensional array, the maximum of the flattened array will
|
||
* be calculated. When dim is provided, the maximum over the selected
|
||
* dimension will be calculated. Parameter dim is zero-based.
|
||
* @param dim The maximum over the selected dimension
|
||
*/
|
||
max(dim?: number): MathJsChain;
|
||
|
||
/**
|
||
* Compute the mean value of matrix or a list with values. In case of a
|
||
* multi dimensional array, the mean of the flattened array will be
|
||
* calculated. When dim is provided, the maximum over the selected
|
||
* dimension will be calculated. Parameter dim is zero-based.
|
||
* @param dim The mean over the selected dimension
|
||
*/
|
||
mean(dim?: number): MathJsChain;
|
||
|
||
/**
|
||
* Compute the median of a matrix or a list with values. The values are
|
||
* sorted and the middle value is returned. In case of an even number of
|
||
* values, the average of the two middle values is returned. Supported
|
||
* types of values are: Number, BigNumber, Unit In case of a (multi
|
||
* dimensional) array or matrix, the median of all elements will be
|
||
* calculated.
|
||
*/
|
||
median(): MathJsChain;
|
||
|
||
/**
|
||
* Compute the maximum value of a matrix or a list of values. In case of
|
||
* a multi dimensional array, the maximum of the flattened array will be
|
||
* calculated. When dim is provided, the maximum over the selected
|
||
* dimension will be calculated. Parameter dim is zero-based.
|
||
* @param dim The minimum over the selected dimension
|
||
*/
|
||
min(dim?: number): MathJsChain;
|
||
|
||
/**
|
||
* Computes the mode of a set of numbers or a list with values(numbers
|
||
* or characters). If there are more than one modes, it returns a list
|
||
* of those values.
|
||
*/
|
||
mode(): MathJsChain;
|
||
|
||
/**
|
||
* Compute the product of a matrix or a list with values. In case of a
|
||
* (multi dimensional) array or matrix, the sum of all elements will be
|
||
* calculated.
|
||
*/
|
||
prod(): MathJsChain;
|
||
|
||
/**
|
||
* Compute the prob order quantile of a matrix or a list with values.
|
||
* The sequence is sorted and the middle value is returned. Supported
|
||
* types of sequence values are: Number, BigNumber, Unit Supported types
|
||
* of probability are: Number, BigNumber In case of a (multi
|
||
* dimensional) array or matrix, the prob order quantile of all elements
|
||
* will be calculated.
|
||
* @param probOrN prob is the order of the quantile, while N is the
|
||
* amount of evenly distributed steps of probabilities; only one of
|
||
* these options can be provided
|
||
* @param sorted =false is data sorted in ascending order
|
||
*/
|
||
quantileSeq(
|
||
prob: number | BigNumber | MathArray,
|
||
sorted?: boolean
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Compute the standard deviation of a matrix or a list with values. The
|
||
* standard deviations is defined as the square root of the variance:
|
||
* std(A) = sqrt(variance(A)). In case of a (multi dimensional) array or
|
||
* matrix, the standard deviation over all elements will be calculated.
|
||
* Optionally, the type of normalization can be specified as second
|
||
* parameter. The parameter normalization can be one of the following
|
||
* values: 'unbiased' (default) The sum of squared errors is divided by
|
||
* (n - 1) 'uncorrected' The sum of squared errors is divided by n
|
||
* 'biased' The sum of squared errors is divided by (n + 1)
|
||
* @param array A single matrix or multiple scalar values
|
||
* @param normalization Determines how to normalize the variance. Choose
|
||
* ‘unbiased’ (default), ‘uncorrected’, or ‘biased’. Default value:
|
||
* ‘unbiased’.
|
||
* @returns The standard deviation
|
||
*/
|
||
std(
|
||
normalization?: "unbiased" | "uncorrected" | "biased" | "unbiased"
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Compute the sum of a matrix or a list with values. In case of a
|
||
* (multi dimensional) array or matrix, the sum of all elements will be
|
||
* calculated.
|
||
*/
|
||
sum(): MathJsChain;
|
||
|
||
/**
|
||
* Compute the variance of a matrix or a list with values. In case of a
|
||
* (multi dimensional) array or matrix, the variance over all elements
|
||
* will be calculated. Optionally, the type of normalization can be
|
||
* specified as second parameter. The parameter normalization can be one
|
||
* of the following values: 'unbiased' (default) The sum of squared
|
||
* errors is divided by (n - 1) 'uncorrected' The sum of squared errors
|
||
* is divided by n 'biased' The sum of squared errors is divided by (n +
|
||
* 1) Note that older browser may not like the variable name var. In
|
||
* that case, the function can be called as math['var'](...) instead of
|
||
* math.variance(...).
|
||
* @param normalization normalization Determines how to normalize the
|
||
* variance. Choose ‘unbiased’ (default), ‘uncorrected’, or ‘biased’.
|
||
* Default value: ‘unbiased’.
|
||
* @returns The variance
|
||
*/
|
||
variance(
|
||
normalization?: "unbiased" | "uncorrected" | "biased" | "unbiased"
|
||
): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* String functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Format a value of any type into a string.
|
||
* @param options An object with formatting options.
|
||
* @param callback A custom formatting function, invoked for all numeric
|
||
* elements in value, for example all elements of a matrix, or the real
|
||
* and imaginary parts of a complex number. This callback can be used to
|
||
* override the built-in numeric notation with any type of formatting.
|
||
* Function callback is called with value as parameter and must return a
|
||
* string.
|
||
* @see http://mathjs.org/docs/reference/functions/format.html
|
||
*/
|
||
format(
|
||
value: any,
|
||
options?: FormatOptions | number | ((item: any) => string),
|
||
callback?: ((value: any) => string)
|
||
): MathJsChain;
|
||
|
||
/**
|
||
* Interpolate values into a string template.
|
||
* @param values An object containing variables which will be filled in
|
||
* in the template.
|
||
* @param precision Number of digits to format numbers. If not provided,
|
||
* the value will not be rounded.
|
||
* @param options Formatting options, or the number of digits to format
|
||
* numbers. See function math.format for a description of all options.
|
||
*/
|
||
print(
|
||
values: any,
|
||
precision?: number,
|
||
options?: number | object
|
||
): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Trigonometry functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Calculate the inverse cosine of a value. For matrices, the function
|
||
* is evaluated element wise.
|
||
*/
|
||
acos(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arccos of a value, defined as acosh(x) =
|
||
* ln(sqrt(x^2 - 1) + x). For matrices, the function is evaluated
|
||
* element wise.
|
||
*/
|
||
acosh(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the inverse cotangent of a value. For matrices, the
|
||
* function is evaluated element wise.
|
||
*/
|
||
acot(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arccotangent of a value, defined as acoth(x)
|
||
* = (ln((x+1)/x) + ln(x/(x-1))) / 2. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
acoth(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the inverse cosecant of a value. For matrices, the function
|
||
* is evaluated element wise.
|
||
*/
|
||
acsc(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arccosecant of a value, defined as acsch(x)
|
||
* = ln(1/x + sqrt(1/x^2 + 1)). For matrices, the function is evaluated
|
||
* element wise.
|
||
*/
|
||
acsch(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the inverse secant of a value. For matrices, the function
|
||
* is evaluated element wise.
|
||
*/
|
||
asec(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arcsecant of a value, defined as asech(x) =
|
||
* ln(sqrt(1/x^2 - 1) + 1/x). For matrices, the function is evaluated
|
||
* element wise.
|
||
*/
|
||
asech(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the inverse sine of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
asin(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arcsine of a value, defined as asinh(x) =
|
||
* ln(x + sqrt(x^2 + 1)). For matrices, the function is evaluated
|
||
* element wise.
|
||
*/
|
||
asinh(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the inverse tangent of a value. For matrices, the function
|
||
* is evaluated element wise.
|
||
*/
|
||
atan(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the inverse tangent function with two arguments, y/x. By
|
||
* providing two arguments, the right quadrant of the computed angle can
|
||
* be determined. For matrices, the function is evaluated element wise.
|
||
*/
|
||
atan2(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic arctangent of a value, defined as atanh(x) =
|
||
* ln((1 + x)/(1 - x)) / 2. For matrices, the function is evaluated
|
||
* element wise.
|
||
*/
|
||
atanh(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the cosine of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
cos(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic cosine of a value, defined as cosh(x) = 1/2
|
||
* * (exp(x) + exp(-x)). For matrices, the function is evaluated element
|
||
* wise.
|
||
*/
|
||
cosh(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the cotangent of a value. cot(x) is defined as 1 / tan(x).
|
||
* For matrices, the function is evaluated element wise.
|
||
*/
|
||
cot(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic cotangent of a value, defined as coth(x) = 1
|
||
* / tanh(x). For matrices, the function is evaluated element wise.
|
||
*/
|
||
coth(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the cosecant of a value, defined as csc(x) = 1/sin(x). For
|
||
* matrices, the function is evaluated element wise.
|
||
*/
|
||
csc(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic cosecant of a value, defined as csch(x) = 1
|
||
* / sinh(x). For matrices, the function is evaluated element wise.
|
||
*/
|
||
csch(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the secant of a value, defined as sec(x) = 1/cos(x). For
|
||
* matrices, the function is evaluated element wise.
|
||
*/
|
||
sec(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic secant of a value, defined as sech(x) = 1 /
|
||
* cosh(x). For matrices, the function is evaluated element wise.
|
||
*/
|
||
sech(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the sine of a value. For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
sin(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic sine of a value, defined as sinh(x) = 1/2 *
|
||
* (exp(x) - exp(-x)). For matrices, the function is evaluated element
|
||
* wise.
|
||
*/
|
||
sinh(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the tangent of a value. tan(x) is equal to sin(x) / cos(x).
|
||
* For matrices, the function is evaluated element wise.
|
||
*/
|
||
tan(): MathJsChain;
|
||
|
||
/**
|
||
* Calculate the hyperbolic tangent of a value, defined as tanh(x) =
|
||
* (exp(2 * x) - 1) / (exp(2 * x) + 1). For matrices, the function is
|
||
* evaluated element wise.
|
||
*/
|
||
tanh(): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Unit functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Change the unit of a value. For matrices, the function is evaluated
|
||
* element wise.
|
||
* @param unit New unit. Can be a string like "cm" or a unit without
|
||
* value.
|
||
*/
|
||
to(unit: Unit | string): MathJsChain;
|
||
|
||
/*************************************************************************
|
||
* Utils functions
|
||
************************************************************************/
|
||
|
||
/**
|
||
* Clone an object.
|
||
*/
|
||
clone(): MathJsChain;
|
||
|
||
/**
|
||
* Test whether a value is an integer number. The function supports
|
||
* number, BigNumber, and Fraction. The function is evaluated
|
||
* element-wise in case of Array or Matrix input.
|
||
*/
|
||
isInteger(): MathJsChain;
|
||
|
||
/**
|
||
* Test whether a value is NaN (not a number). The function supports
|
||
* types number, BigNumber, Fraction, Unit and Complex. The function is
|
||
* evaluated element-wise in case of Array or Matrix input.
|
||
*/
|
||
isNaN(): MathJsChain;
|
||
|
||
/**
|
||
* Test whether a value is negative: smaller than zero. The function
|
||
* supports types number, BigNumber, Fraction, and Unit. The function is
|
||
* evaluated element-wise in case of Array or Matrix input.
|
||
*/
|
||
isNegative(): MathJsChain;
|
||
|
||
/**
|
||
* Test whether a value is an numeric value. The function is evaluated
|
||
* element-wise in case of Array or Matrix input.
|
||
*/
|
||
isNumeric(): MathJsChain;
|
||
|
||
/**
|
||
* Test whether a value is positive: larger than zero. The function
|
||
* supports types number, BigNumber, Fraction, and Unit. The function is
|
||
* evaluated element-wise in case of Array or Matrix input.
|
||
*/
|
||
isPositive(): MathJsChain;
|
||
|
||
/**
|
||
* Test whether a value is prime: has no divisors other than itself and
|
||
* one. The function supports type number, bignumber. The function is
|
||
* evaluated element-wise in case of Array or Matrix input.
|
||
*/
|
||
isPrime(): MathJsChain;
|
||
|
||
/**
|
||
* Test whether a value is zero. The function can check for zero for
|
||
* types number, BigNumber, Fraction, Complex, and Unit. The function is
|
||
* evaluated element-wise in case of Array or Matrix input.
|
||
*/
|
||
isZero(): MathJsChain;
|
||
|
||
/**
|
||
* Determine the type of a variable.
|
||
*/
|
||
typeOf(): MathJsChain;
|
||
}
|
||
|
||
interface ImportOptions {
|
||
override?: boolean;
|
||
silent?: boolean;
|
||
wrap?: boolean;
|
||
}
|
||
|
||
interface ImportObject {
|
||
[key: string]: any;
|
||
}
|
||
}
|