DefinitelyTyped/types/google-apps-script/google-apps-script.optimization.d.ts
Grant Timmerman 9f25bcc456 Update Google Apps Script Types (2017-05-12 -> 2018-07-11) (#27235)
This PR updates Google Apps Script types. (2017-05-12 -> 2018-07-11)
This is a generated type definition.
CC: @erickoledadevrel

---

- [x] Use a meaningful title for the pull request. Include the name of the package modified.
- [x] Test the change in your own code. (Compile and run.)
- [x] Add or edit tests to reflect the change. (Run with `npm test`.)
- [x] Follow the advice from the [readme](https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/README.md#make-a-pull-request).
- [x] Avoid [common mistakes](https://github.com/DefinitelyTyped/DefinitelyTyped/blob/master/README.md#common-mistakes).
- [x] Run `npm run lint package-name` (or `tsc` if no `tslint.json` is present).
```
npm run lint google-apps-script
definitely-typed@0.0.2 lint /Users/timmerman/Documents/github/DefinitelyTyped
dtslint types "google-apps-script"
# No result.
```

If changing an existing definition:
- [x] Provide a URL to documentation or source code which provides context for the suggested changes: https://developers.google.com/apps-script/reference/
- [x] Increase the version number in the header if appropriate.
  - The version should be bumped by the publisher.
- [x] If you are making substantial changes, consider adding a `tslint.json` containing `{ "extends": "dtslint/dt.json" }`.
2018-07-13 15:05:15 -07:00

230 lines
8.5 KiB
TypeScript

// Type definitions for Google Apps Script 2018-07-11
// Project: https://developers.google.com/apps-script/
// Definitions by: motemen <https://github.com/motemen/>
// Definitions: https://github.com/DefinitelyTyped/DefinitelyTyped
/// <reference path="google-apps-script.types.d.ts" />
declare namespace GoogleAppsScript {
export module Optimization {
/**
* Object storing a linear constraint of the form lowerBound ≤ Sum(a(i) x(i)) ≤ upperBound
* where lowerBound and upperBound are constants, a(i) are constant
* coefficients and x(i) are variables (unknowns).
*
* The example below creates one variable x with values between 0 and 5
* and creates the constraint 0 ≤ 2 * x ≤ 5. This is done by first creating a constraint
* with the lower bound 5 and upper bound 5. Then the coefficient for variable
* x in this constraint is set to 2.
*
* var engine = LinearOptimizationService.createEngine();
* // Create a variable so we can add it to the constraint
* engine.addVariable('x', 0, 5);
* // Create a linear constraint with the bounds 0 and 10
* var constraint = engine.addConstraint(0, 10);
* // Set the coefficient of the variable in the constraint. The constraint is now:
* // 0 <= 2 * x <= 5
* constraint.setCoefficient('x', 2);
*/
export interface LinearOptimizationConstraint {
setCoefficient(variableName: string, coefficient: Number): LinearOptimizationConstraint;
}
/**
* The engine used to model and solve a linear program. The example below solves the following
* linear program:
*
* Two variables, x and y:
*
* 0 ≤ x ≤ 10
*
* 0 ≤ y ≤ 5
*
* Constraints:
*
* 0 ≤ 2 * x + 5 * y ≤ 10
*
* 0 ≤ 10 * x + 3 * y ≤ 20
*
* Objective:
* Maximize x + y
*
* var engine = LinearOptimizationService.createEngine();
*
* // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc
* // Add two variables, 0 <= x <= 10 and 0 <= y <= 5
* engine.addVariable('x', 0, 10);
* engine.addVariable('y', 0, 5);
*
* // Create the constraint: 0 <= 2 * x + 5 * y <= 10
* var constraint = engine.addConstraint(0, 10);
* constraint.setCoefficient('x', 2);
* constraint.setCoefficient('y', 5);
*
* // Create the constraint: 0 <= 10 * x + 3 * y <= 20
* var constraint = engine.addConstraint(0, 20);
* constraint.setCoefficient('x', 10);
* constraint.setCoefficient('y', 3);
*
* // Set the objective to be x + y
* engine.setObjectiveCoefficient('x', 1);
* engine.setObjectiveCoefficient('y', 1);
*
* // Engine should maximize the objective
* engine.setMaximization();
*
* // Solve the linear program
* var solution = engine.solve();
* if (!solution.isValid()) {
* Logger.log('No solution ' + solution.getStatus());
* } else {
* Logger.log('Value of x: ' + solution.getVariableValue('x'));
* Logger.log('Value of y: ' + solution.getVariableValue('y'));
* }
*/
export interface LinearOptimizationEngine {
addConstraint(lowerBound: Number, upperBound: Number): LinearOptimizationConstraint;
addVariable(name: string, lowerBound: Number, upperBound: Number): LinearOptimizationEngine;
addVariable(name: string, lowerBound: Number, upperBound: Number, type: VariableType): LinearOptimizationEngine;
addVariable(name: string, lowerBound: Number, upperBound: Number, type: VariableType, objectiveCoefficient: Number): LinearOptimizationEngine;
setMaximization(): LinearOptimizationEngine;
setMinimization(): LinearOptimizationEngine;
setObjectiveCoefficient(variableName: string, coefficient: Number): LinearOptimizationEngine;
solve(): LinearOptimizationSolution;
solve(seconds: Number): LinearOptimizationSolution;
}
/**
* The linear optimization service, used to model and solve linear and mixed-integer linear
* programs. The example below solves the following linear program:
*
* Two variables, x and y:
*
* 0 ≤ x ≤ 10
*
* 0 ≤ y ≤ 5
*
* Constraints:
*
* 0 ≤ 2 * x + 5 * y ≤ 10
*
* 0 ≤ 10 * x + 3 * y ≤ 20
*
* Objective:
* Maximize x + y
*
* var engine = LinearOptimizationService.createEngine();
*
* // Add variables, constraints and define the objective using addVariable(), addConstraint(), etc.
* // Add two variables, 0 <= x <= 10 and 0 <= y <= 5
* engine.addVariable('x', 0, 10);
* engine.addVariable('y', 0, 5);
*
* // Create the constraint: 0 <= 2 * x + 5 * y <= 10
* var constraint = engine.addConstraint(0, 10);
* constraint.setCoefficient('x', 2);
* constraint.setCoefficient('y', 5);
*
* // Create the constraint: 0 <= 10 * x + 3 * y <= 20
* var constraint = engine.addConstraint(0, 20);
* constraint.setCoefficient('x', 10);
* constraint.setCoefficient('y', 3);
*
* // Set the objective to be x + y
* engine.setObjectiveCoefficient('x', 1);
* engine.setObjectiveCoefficient('y', 1);
*
* // Engine should maximize the objective.
* engine.setMaximization();
*
* // Solve the linear program
* var solution = engine.solve();
* if (!solution.isValid()) {
* Logger.log('No solution ' + solution.getStatus());
* } else {
* Logger.log('Value of x: ' + solution.getVariableValue('x'));
* Logger.log('Value of y: ' + solution.getVariableValue('y'));
* }
*/
export interface LinearOptimizationService {
Status: typeof Status;
VariableType: typeof VariableType;
createEngine(): LinearOptimizationEngine;
}
/**
* The solution of a linear program. The example below solves the following linear program:
*
* Two variables, x and y:
*
* 0 ≤ x ≤ 10
*
* 0 ≤ y ≤ 5
*
* Constraints:
*
* 0 ≤ 2 * x + 5 * y ≤ 10
*
* 0 ≤ 10 * x + 3 * y ≤ 20
*
* Objective:
* Maximize x + y
*
* var engine = LinearOptimizationService.createEngine();
*
* // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc.
* // Add two variables, 0 <= x <= 10 and 0 <= y <= 5
* engine.addVariable('x', 0, 10);
* engine.addVariable('y', 0, 5);
*
* // Create the constraint: 0 <= 2 * x + 5 * y <= 10
* var constraint = engine.addConstraint(0, 10);
* constraint.setCoefficient('x', 2);
* constraint.setCoefficient('y', 5);
*
* // Create the constraint: 0 <= 10 * x + 3 * y <= 20
* var constraint = engine.addConstraint(0, 20);
* constraint.setCoefficient('x', 10);
* constraint.setCoefficient('y', 3);
*
* // Set the objective to be x + y
* engine.setObjectiveCoefficient('x', 1);
* engine.setObjectiveCoefficient('y', 1);
*
* // Engine should maximize the objective
* engine.setMaximization();
*
* // Solve the linear program
* var solution = engine.solve();
* if (!solution.isValid()) {
* Logger.log('No solution ' + solution.getStatus());
* } else {
* Logger.log('Objective value: ' + solution.getObjectiveValue());
* Logger.log('Value of x: ' + solution.getVariableValue('x'));
* Logger.log('Value of y: ' + solution.getVariableValue('y'));
* }
*/
export interface LinearOptimizationSolution {
getObjectiveValue(): Number;
getStatus(): Status;
getVariableValue(variableName: string): Number;
isValid(): boolean;
}
/**
* Status of the solution. Before solving a problem the status will be NOT_SOLVED;
* afterwards it will take any of the other values depending if it successfully found a solution and
* if the solution is optimal.
*/
export enum Status { OPTIMAL, FEASIBLE, INFEASIBLE, UNBOUNDED, ABNORMAL, MODEL_INVALID, NOT_SOLVED }
/**
* Type of variables created by the engine.
*/
export enum VariableType { INTEGER, CONTINUOUS }
}
}
declare var LinearOptimizationService: GoogleAppsScript.Optimization.LinearOptimizationService;