support mix precision training

This commit is contained in:
Thang Vu 2022-04-10 02:57:11 +00:00
parent c620cfc435
commit 3475ab88b9
10 changed files with 301 additions and 94 deletions

View File

@ -66,6 +66,7 @@ optimizer:
type: 'Adam'
lr: 0.004
fp16: False
epochs: 128
step_epoch: 50
save_freq: 4

View File

@ -0,0 +1,74 @@
model:
channels: 32
num_blocks: 7
semantic_classes: 20
instance_classes: 18
sem2ins_classes: []
semantic_only: True
ignore_label: -100
grouping_cfg:
score_thr: 0.2
radius: 0.04
mean_active: 300
class_numpoint_mean: [-1., -1., 3917., 12056., 2303.,
8331., 3948., 3166., 5629., 11719.,
1003., 3317., 4912., 10221., 3889.,
4136., 2120., 945., 3967., 2589.]
npoint_thr: 0.05 # absolute if class_numpoint == -1, relative if class_numpoint != -1
ignore_classes: [0, 1]
instance_voxel_cfg:
scale: 50
spatial_shape: 20
train_cfg:
max_proposal_num: 200
pos_iou_thr: 0.5
test_cfg:
x4_split: False
cls_score_thr: 0.001
mask_score_thr: -0.5
min_npoint: 100
fixed_modules: []
data:
train:
type: 'scannetv2'
data_root: 'dataset/scannetv2'
prefix: 'train'
suffix: '_inst_nostuff.pth'
training: True
repeat: 4
voxel_cfg:
scale: 50
spatial_shape: [128, 512]
max_npoint: 250000
min_npoint: 5000
test:
type: 'scannetv2'
data_root: 'dataset/scannetv2'
prefix: 'val'
suffix: '_inst_nostuff.pth'
training: False
voxel_cfg:
scale: 50
spatial_shape: [128, 512]
max_npoint: 250000
min_npoint: 5000
dataloader:
train:
batch_size: 4
num_workers: 4
test:
batch_size: 1
num_workers: 1
optimizer:
type: 'Adam'
lr: 0.004
fp16: True
epochs: 128
step_epoch: 50
save_freq: 4
pretrain: ''
work_dir: ''

View File

@ -0,0 +1,74 @@
model:
channels: 32
num_blocks: 7
semantic_classes: 20
instance_classes: 18
sem2ins_classes: []
semantic_only: False
ignore_label: -100
grouping_cfg:
score_thr: 0.2
radius: 0.04
mean_active: 300
class_numpoint_mean: [-1., -1., 3917., 12056., 2303.,
8331., 3948., 3166., 5629., 11719.,
1003., 3317., 4912., 10221., 3889.,
4136., 2120., 945., 3967., 2589.]
npoint_thr: 0.05 # absolute if class_numpoint == -1, relative if class_numpoint != -1
ignore_classes: [0, 1]
instance_voxel_cfg:
scale: 50
spatial_shape: 20
train_cfg:
max_proposal_num: 200
pos_iou_thr: 0.5
test_cfg:
x4_split: False
cls_score_thr: 0.001
mask_score_thr: -0.5
min_npoint: 100
fixed_modules: ['input_conv', 'unet', 'output_layer', 'semantic_linear', 'offset_linear']
data:
train:
type: 'scannetv2'
data_root: 'dataset/scannetv2'
prefix: 'train'
suffix: '_inst_nostuff.pth'
training: True
repeat: 4
voxel_cfg:
scale: 50
spatial_shape: [128, 512]
max_npoint: 250000
min_npoint: 5000
test:
type: 'scannetv2'
data_root: 'dataset/scannetv2'
prefix: 'val'
suffix: '_inst_nostuff.pth'
training: False
voxel_cfg:
scale: 50
spatial_shape: [128, 512]
max_npoint: 250000
min_npoint: 5000
dataloader:
train:
batch_size: 4
num_workers: 4
test:
batch_size: 1
num_workers: 1
optimizer:
type: 'Adam'
lr: 0.004
fp16: True
epochs: 128
step_epoch: 50
save_freq: 4
pretrain: 'work_dirs/softgroup_scannet_backbone_spconv2_dist/epoch_116.pth'
work_dir: ''

View File

@ -70,7 +70,7 @@ class CustomDataset(Dataset):
return x + g(x) * mag
def getInstanceInfo(self, xyz, instance_label, label):
def getInstanceInfo(self, xyz, instance_label, semantic_label):
pt_mean = np.ones((xyz.shape[0], 3), dtype=np.float32) * -100.0
instance_pointnum = []
instance_cls = []
@ -80,8 +80,8 @@ class CustomDataset(Dataset):
xyz_i = xyz[inst_idx_i]
pt_mean[inst_idx_i] = xyz_i.mean(0)
instance_pointnum.append(inst_idx_i[0].size)
cls_loc = inst_idx_i[0][0]
instance_cls.append(label[cls_loc])
cls_idx = inst_idx_i[0][0]
instance_cls.append(semantic_label[cls_idx])
pt_offset_label = pt_mean - xyz
return instance_num, instance_pointnum, instance_cls, pt_offset_label
@ -122,7 +122,7 @@ class CustomDataset(Dataset):
j += 1
return instance_label
def transform_train(self, xyz, rgb, label, instance_label):
def transform_train(self, xyz, rgb, semantic_label, instance_label):
xyz_middle = self.dataAugment(xyz, True, True, True)
xyz = xyz_middle * self.voxel_cfg.scale
xyz = self.elastic(xyz, 6 * self.voxel_cfg.scale // 50, 40 * self.voxel_cfg.scale / 50)
@ -140,17 +140,17 @@ class CustomDataset(Dataset):
xyz = xyz[valid_idxs]
xyz_middle = xyz_middle[valid_idxs]
rgb = rgb[valid_idxs]
label = label[valid_idxs]
semantic_label = semantic_label[valid_idxs]
instance_label = self.getCroppedInstLabel(instance_label, valid_idxs)
return xyz, xyz_middle, rgb, label, instance_label
return xyz, xyz_middle, rgb, semantic_label, instance_label
def transform_test(self, xyz, rgb, label, instance_label):
def transform_test(self, xyz, rgb, semantic_label, instance_label):
xyz_middle = self.dataAugment(xyz, False, True, True)
xyz = xyz_middle * self.voxel_cfg.scale
xyz -= xyz.min(0)
valid_idxs = np.ones(xyz.shape[0], dtype=bool)
instance_label = self.getCroppedInstLabel(instance_label, valid_idxs) # TODO remove this
return xyz, xyz_middle, rgb, label, instance_label
return xyz, xyz_middle, rgb, semantic_label, instance_label
def __getitem__(self, index):
filename = self.filenames[index]
@ -159,26 +159,26 @@ class CustomDataset(Dataset):
data = self.transform_train(*data) if self.training else self.transform_test(*data)
if data is None:
return None
xyz, xyz_middle, rgb, label, instance_label = data
info = self.getInstanceInfo(xyz_middle, instance_label.astype(np.int32), label)
xyz, xyz_middle, rgb, semantic_label, instance_label = data
info = self.getInstanceInfo(xyz_middle, instance_label.astype(np.int32), semantic_label)
inst_num, inst_pointnum, inst_cls, pt_offset_label = info
loc = torch.from_numpy(xyz).long()
loc_float = torch.from_numpy(xyz_middle)
coord = torch.from_numpy(xyz).long()
coord_float = torch.from_numpy(xyz_middle)
feat = torch.from_numpy(rgb).float()
if self.training:
feat += torch.randn(3) * 0.1
label = torch.from_numpy(label)
semantic_label = torch.from_numpy(semantic_label)
instance_label = torch.from_numpy(instance_label)
pt_offset_label = torch.from_numpy(pt_offset_label)
return (scan_id, loc, loc_float, feat, label, instance_label, inst_num, inst_pointnum,
inst_cls, pt_offset_label)
return (scan_id, coord, coord_float, feat, semantic_label, instance_label, inst_num,
inst_pointnum, inst_cls, pt_offset_label)
def collate_fn(self, batch):
scan_ids = []
locs = []
locs_float = []
coords = []
coords_float = []
feats = []
labels = []
semantic_labels = []
instance_labels = []
instance_pointnum = [] # (total_nInst), int
@ -190,15 +190,15 @@ class CustomDataset(Dataset):
for data in batch:
if data is None:
continue
(scan_id, loc, loc_float, feat, label, instance_label, inst_num, inst_pointnum,
inst_cls, pt_offset_label) = data
(scan_id, coord, coord_float, feat, semantic_label, instance_label, inst_num,
inst_pointnum, inst_cls, pt_offset_label) = data
instance_label[np.where(instance_label != -100)] += total_inst_num
total_inst_num += inst_num
scan_ids.append(scan_id)
locs.append(torch.cat([loc.new_full((loc.size(0), 1), batch_id), loc], 1))
locs_float.append(loc_float)
coords.append(torch.cat([coord.new_full((coord.size(0), 1), batch_id), coord], 1))
coords_float.append(coord_float)
feats.append(feat)
labels.append(label)
semantic_labels.append(semantic_label)
instance_labels.append(instance_label)
instance_pointnum.extend(inst_pointnum)
instance_cls.extend(inst_cls)
@ -209,29 +209,29 @@ class CustomDataset(Dataset):
self.logger.info(f'batch is truncated from size {len(batch)} to {batch_id}')
# merge all the scenes in the batch
locs = torch.cat(locs, 0) # long (N, 1 + 3), the batch item idx is put in locs[:, 0]
batch_idxs = locs[:, 0].int()
locs_float = torch.cat(locs_float, 0).to(torch.float32) # float (N, 3)
coords = torch.cat(coords, 0) # long (N, 1 + 3), the batch item idx is put in coords[:, 0]
batch_idxs = coords[:, 0].int()
coords_float = torch.cat(coords_float, 0).to(torch.float32) # float (N, 3)
feats = torch.cat(feats, 0) # float (N, C)
labels = torch.cat(labels, 0).long() # long (N)
semantic_labels = torch.cat(semantic_labels, 0).long() # long (N)
instance_labels = torch.cat(instance_labels, 0).long() # long (N)
instance_pointnum = torch.tensor(instance_pointnum, dtype=torch.int) # int (total_nInst)
instance_cls = torch.tensor(instance_cls, dtype=torch.long) # long (total_nInst)
pt_offset_labels = torch.cat(pt_offset_labels).float()
spatial_shape = np.clip(
locs.max(0)[0][1:].numpy() + 1, self.voxel_cfg.spatial_shape[0], None)
voxel_locs, v2p_map, p2v_map = voxelization_idx(locs, 1)
coords.max(0)[0][1:].numpy() + 1, self.voxel_cfg.spatial_shape[0], None)
voxel_coords, v2p_map, p2v_map = voxelization_idx(coords, 1)
return {
'scan_ids': scan_ids,
'locs': locs,
'coords': coords,
'batch_idxs': batch_idxs,
'voxel_locs': voxel_locs,
'voxel_coords': voxel_coords,
'p2v_map': p2v_map,
'v2p_map': v2p_map,
'locs_float': locs_float,
'coords_float': coords_float,
'feats': feats,
'labels': labels,
'semantic_labels': semantic_labels,
'instance_labels': instance_labels,
'instance_pointnum': instance_pointnum,
'instance_cls': instance_cls,

View File

@ -26,21 +26,21 @@ class S3DISDataset(CustomDataset):
def load(self, filename):
# TODO make file load results consistent
xyz, rgb, label, instance_label, _, _ = torch.load(filename)
xyz, rgb, semantic_label, instance_label, _, _ = torch.load(filename)
# subsample data
if self.training:
N = xyz.shape[0]
inds = np.random.choice(N, int(N * 0.25), replace=False)
xyz = xyz[inds]
rgb = rgb[inds]
label = label[inds]
semantic_label = semantic_label[inds]
instance_label = self.getCroppedInstLabel(instance_label, inds)
return xyz, rgb, label, instance_label
return xyz, rgb, semantic_label, instance_label
def crop(self, xyz, step=64):
return super().crop(xyz, step=step)
def transform_test(self, xyz, rgb, label, instance_label):
def transform_test(self, xyz, rgb, semantic_label, instance_label):
# devide into 4 piecies
inds = np.arange(xyz.shape[0])
piece_1 = inds[::4]
@ -64,37 +64,37 @@ class S3DISDataset(CustomDataset):
rgb = np.concatenate(rgb_list, 0)
valid_idxs = np.ones(xyz.shape[0], dtype=bool)
instance_label = self.getCroppedInstLabel(instance_label, valid_idxs) # TODO remove this
return xyz, xyz_middle, rgb, label, instance_label
return xyz, xyz_middle, rgb, semantic_label, instance_label
def collate_fn(self, batch):
if self.training:
return super().collate_fn(batch)
# assume 1 scan only
(scan_id, loc, loc_float, feat, label, instance_label, inst_num, inst_pointnum, inst_cls,
pt_offset_label) = batch[0]
(scan_id, coord, coord_float, feat, semantic_label, instance_label, inst_num, inst_pointnum,
inst_cls, pt_offset_label) = batch[0]
scan_ids = [scan_id]
locs = loc.long()
batch_idxs = torch.zeros_like(loc[:, 0].int())
locs_float = loc_float.float()
coords = coord.long()
batch_idxs = torch.zeros_like(coord[:, 0].int())
coords_float = coord_float.float()
feats = feat.float()
labels = label.long()
semantic_labels = semantic_label.long()
instance_labels = instance_label.long()
instance_pointnum = torch.tensor([inst_pointnum], dtype=torch.int)
instance_cls = torch.tensor([inst_cls], dtype=torch.long)
pt_offset_labels = pt_offset_label.float()
spatial_shape = np.clip((locs.max(0)[0][1:] + 1).numpy(), self.voxel_cfg.spatial_shape[0],
spatial_shape = np.clip((coords.max(0)[0][1:] + 1).numpy(), self.voxel_cfg.spatial_shape[0],
None)
voxel_locs, v2p_map, p2v_map = voxelization_idx(locs, 4)
voxel_coords, v2p_map, p2v_map = voxelization_idx(coords, 4)
return {
'scan_ids': scan_ids,
'batch_idxs': batch_idxs,
'voxel_locs': voxel_locs,
'voxel_coords': voxel_coords,
'p2v_map': p2v_map,
'v2p_map': v2p_map,
'locs_float': locs_float,
'coords_float': coords_float,
'feats': feats,
'labels': labels,
'semantic_labels': semantic_labels,
'instance_labels': instance_labels,
'instance_pointnum': instance_pointnum,
'instance_cls': instance_cls,

View File

@ -7,8 +7,8 @@ class ScanNetDataset(CustomDataset):
'counter', 'desk', 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink',
'bathtub', 'otherfurniture')
def getInstanceInfo(self, xyz, instance_label, label):
ret = super().getInstanceInfo(xyz, instance_label, label)
def getInstanceInfo(self, xyz, instance_label, semantic_label):
ret = super().getInstanceInfo(xyz, instance_label, semantic_label)
instance_num, instance_pointnum, instance_cls, pt_offset_label = ret
instance_cls = [x - 2 if x != -100 else x for x in instance_cls]
return instance_num, instance_pointnum, instance_cls, pt_offset_label

View File

@ -8,6 +8,7 @@ import torch.nn.functional as F
from ..lib.softgroup_ops import (ballquery_batch_p, bfs_cluster, get_mask_iou_on_cluster,
get_mask_iou_on_pred, get_mask_label, global_avg_pool, sec_max,
sec_min, voxelization, voxelization_idx)
from ..util import force_fp32
from .blocks import MLP, ResidualBlock, UBlock
@ -80,25 +81,13 @@ class SoftGroup(nn.Module):
def forward(self, batch, return_loss=False):
if return_loss:
return self.forward_train(batch)
return self.forward_train(**batch)
else:
return self.forward_test(batch)
def forward_train(self, batch):
batch_idxs = batch['batch_idxs'].cuda()
voxel_coords = batch['voxel_locs'].cuda()
p2v_map = batch['p2v_map'].cuda()
v2p_map = batch['v2p_map'].cuda()
coords_float = batch['locs_float'].cuda()
feats = batch['feats'].cuda()
semantic_labels = batch['labels'].cuda()
instance_labels = batch['instance_labels'].cuda()
instance_pointnum = batch['instance_pointnum'].cuda()
instance_cls = batch['instance_cls'].cuda()
pt_offset_labels = batch['pt_offset_labels'].cuda()
spatial_shape = batch['spatial_shape']
batch_size = batch['batch_size']
return self.forward_test(**batch)
def forward_train(self, batch_idxs, voxel_coords, p2v_map, v2p_map, coords_float, feats,
semantic_labels, instance_labels, instance_pointnum, instance_cls,
pt_offset_labels, spatial_shape, batch_size, **kwargs):
losses = {}
feats = torch.cat((feats, coords_float), 1)
voxel_feats = voxelization(feats, p2v_map)
@ -155,6 +144,7 @@ class SoftGroup(nn.Module):
losses['offset_loss'] = (offset_loss, pos_inds.sum())
return losses
@force_fp32(apply_to=('cls_scores', 'mask_scores', 'iou_scores'))
def instance_loss(self, cls_scores, mask_scores, iou_scores, proposals_idx, proposals_offset,
instance_labels, instance_pointnum, instance_cls, instance_batch_idxs):
losses = {}
@ -208,18 +198,9 @@ class SoftGroup(nn.Module):
losses['iou_score_loss'] = (iou_score_loss, iou_score_weight.sum())
return losses
def forward_test(self, batch):
batch_idxs = batch['batch_idxs'].cuda()
voxel_coords = batch['voxel_locs'].cuda()
p2v_map = batch['p2v_map'].cuda()
v2p_map = batch['v2p_map'].cuda()
coords_float = batch['locs_float'].cuda()
feats = batch['feats'].cuda()
labels = batch['labels'].cuda()
instance_labels = batch['instance_labels'].cuda()
spatial_shape = batch['spatial_shape']
batch_size = batch['batch_size']
def forward_test(self, batch_idxs, voxel_coords, p2v_map, v2p_map, coords_float, feats,
semantic_labels, instance_labels, spatial_shape, batch_size, scan_ids,
**kwargs):
feats = torch.cat((feats, coords_float), 1)
voxel_feats = voxelization(feats, p2v_map)
input = spconv.SparseConvTensor(voxel_feats, voxel_coords.int(), spatial_shape, batch_size)
@ -227,7 +208,8 @@ class SoftGroup(nn.Module):
input, v2p_map, coords_float, x4_split=self.test_cfg.x4_split)
semantic_preds = semantic_scores.max(1)[1]
ret = dict(
semantic_preds=semantic_preds.cpu().numpy(), semantic_labels=labels.cpu().numpy())
semantic_preds=semantic_preds.cpu().numpy(),
semantic_labels=semantic_labels.cpu().numpy())
if not self.semantic_only:
proposals_idx, proposals_offset = self.forward_grouping(semantic_scores, pt_offsets,
batch_idxs, coords_float,
@ -236,10 +218,9 @@ class SoftGroup(nn.Module):
output_feats, coords_float,
**self.instance_voxel_cfg)
_, cls_scores, iou_scores, mask_scores = self.forward_instance(inst_feats, inst_map)
pred_instances = self.get_instances(batch['scan_ids'][0], proposals_idx,
semantic_scores, cls_scores, iou_scores,
mask_scores)
gt_instances = self.get_gt_instances(labels, instance_labels)
pred_instances = self.get_instances(scan_ids[0], proposals_idx, semantic_scores,
cls_scores, iou_scores, mask_scores)
gt_instances = self.get_gt_instances(semantic_labels, instance_labels)
ret.update(dict(pred_instances=pred_instances, gt_instances=gt_instances))
return ret
@ -289,6 +270,7 @@ class SoftGroup(nn.Module):
x_new[p] = x_split[i]
return x_new
@force_fp32(apply_to=('semantic_scores, pt_offsets'))
def forward_grouping(self,
semantic_scores,
pt_offsets,
@ -350,6 +332,7 @@ class SoftGroup(nn.Module):
return instance_batch_idxs, cls_scores, iou_scores, mask_scores
@force_fp32(apply_to=('semantic_scores', 'cls_scores', 'iou_scores', 'mask_scores'))
def get_instances(self, scan_id, proposals_idx, semantic_scores, cls_scores, iou_scores,
mask_scores):
num_instances = cls_scores.size(0)
@ -402,19 +385,21 @@ class SoftGroup(nn.Module):
instances.append(pred)
return instances
def get_gt_instances(self, labels, instance_labels):
def get_gt_instances(self, semantic_labels, instance_labels):
"""Get gt instances for evaluation."""
# convert to evaluation format 0: ignore, 1->N: valid
label_shift = self.semantic_classes - self.instance_classes
labels = labels - label_shift + 1
labels[labels < 0] = 0
semantic_labels = semantic_labels - label_shift + 1
semantic_labels[semantic_labels < 0] = 0
instance_labels += 1
ignore_inds = instance_labels < 0
gt_ins = labels * 1000 + instance_labels
# scannet encoding rule
gt_ins = semantic_labels * 1000 + instance_labels
gt_ins[ignore_inds] = 0
gt_ins = gt_ins.cpu().numpy()
return gt_ins
@force_fp32(apply_to='feats')
def clusters_voxelization(self,
clusters_idx,
clusters_offset,
@ -466,6 +451,7 @@ class SoftGroup(nn.Module):
assert batch_offsets[-1] == batch_idxs.shape[0]
return batch_offsets
@force_fp32(apply_to=('x'))
def global_pool(self, x, expand=False):
indices = x.indices[:, 0]
batch_counts = torch.bincount(indices)

View File

@ -1,4 +1,5 @@
from .dist import get_dist_info, init_dist
from .fp16 import force_fp32
from .logger import get_root_logger
from .optim import build_optimizer
from .utils import *

66
softgroup/util/fp16.py Normal file
View File

@ -0,0 +1,66 @@
# Simplfied from mmcv.
# Directly use torch.cuda.amp.autocast for mix-precision and support sparse tensor
import functools
from collections import abc
from inspect import getfullargspec
import spconv.pytorch as spconv
import torch
def cast_tensor_type(inputs, src_type, dst_type):
if isinstance(inputs, torch.Tensor):
return inputs.to(dst_type) if inputs.dtype == src_type else inputs
elif isinstance(inputs, spconv.SparseConvTensor):
if inputs.features.dtype == src_type:
features = inputs.features.to(dst_type)
inputs = inputs.replace_feature(features)
return inputs
elif isinstance(inputs, abc.Mapping):
return type(inputs)({k: cast_tensor_type(v, src_type, dst_type) for k, v in inputs.items()})
elif isinstance(inputs, abc.Iterable):
return type(inputs)(cast_tensor_type(item, src_type, dst_type) for item in inputs)
else:
return inputs
def force_fp32(apply_to=None, out_fp16=False):
def force_fp32_wrapper(old_func):
@functools.wraps(old_func)
def new_func(*args, **kwargs):
if not isinstance(args[0], torch.nn.Module):
raise TypeError('@force_fp32 can only be used to decorate the '
'method of nn.Module')
# get the arg spec of the decorated method
args_info = getfullargspec(old_func)
# get the argument names to be casted
args_to_cast = args_info.args if apply_to is None else apply_to
# convert the args that need to be processed
new_args = []
if args:
arg_names = args_info.args[:len(args)]
for i, arg_name in enumerate(arg_names):
if arg_name in args_to_cast:
new_args.append(cast_tensor_type(args[i], torch.half, torch.float))
else:
new_args.append(args[i])
# convert the kwargs that need to be processed
new_kwargs = dict()
if kwargs:
for arg_name, arg_value in kwargs.items():
if arg_name in args_to_cast:
new_kwargs[arg_name] = cast_tensor_type(arg_value, torch.half, torch.float)
else:
new_kwargs[arg_name] = arg_value
with torch.cuda.amp.autocast(enabled=False):
output = old_func(*new_args, **new_kwargs)
# cast the results back to fp32 if necessary
if out_fp16:
output = cast_tensor_type(output, torch.float, torch.half)
return output
return new_func
return force_fp32_wrapper

View File

@ -38,9 +38,9 @@ if __name__ == '__main__':
init_dist()
# work_dir & logger
if args.work_dir is not None:
if args.work_dir:
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
else:
cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0])
os.makedirs(osp.abspath(cfg.work_dir), exist_ok=True)
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
@ -48,6 +48,7 @@ if __name__ == '__main__':
logger = get_root_logger(log_file=log_file)
logger.info(f'Config:\n{cfg_txt}')
logger.info(f'Distributed: {args.dist}')
logger.info(f'Mix precision training: {cfg.fp16}')
shutil.copy(args.config, osp.join(cfg.work_dir, osp.basename(args.config)))
writer = SummaryWriter(cfg.work_dir)
@ -55,6 +56,7 @@ if __name__ == '__main__':
model = SoftGroup(**cfg.model).cuda()
if args.dist:
model = DistributedDataParallel(model, device_ids=[torch.cuda.current_device()])
scaler = torch.cuda.amp.GradScaler(enabled=cfg.fp16)
# data
train_set = build_dataset(cfg.data.train, logger)
@ -91,7 +93,9 @@ if __name__ == '__main__':
data_time.update(time.time() - end)
cosine_lr_after_step(optimizer, cfg.optimizer.lr, epoch - 1, cfg.step_epoch, cfg.epochs)
loss, log_vars = model(batch, return_loss=True)
with torch.cuda.amp.autocast(enabled=cfg.fp16):
loss, log_vars = model(batch, return_loss=True)
# meter_dict
for k, v in log_vars.items():
@ -101,8 +105,9 @@ if __name__ == '__main__':
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# time and print
current_iter = (epoch - 1) * len(train_loader) + i