From 3fe43242b1d19582e76a6b1d31a29455365ee4c2 Mon Sep 17 00:00:00 2001 From: Thang Vu Date: Sat, 16 Apr 2022 19:02:49 +0900 Subject: [PATCH] Update traning --- README.md | 31 +++++++++++++------------------ 1 file changed, 13 insertions(+), 18 deletions(-) diff --git a/README.md b/README.md index ad89b07..72f4642 100644 --- a/README.md +++ b/README.md @@ -29,38 +29,38 @@ Please refer to [installation guide](docs/installation.md). Please refer to [data preparation](dataset/README.md) for preparing the S3DIS and ScanNet v2 dataset. ## Pretrained models + + | Dataset | AP | AP_50 | AP_25 | Bbox AP_50 | Bbox AP_25 | Download | |:----------:|:----:|:-----:|:-----:|:-----:|:-----:|:-------------------------------------------------------------------------------------------:| -| S3DIS | 51.4 | 66.5 | 75.4 | - | - | [model](https://drive.google.com/file/d/1RodfMTUC-0YWs47kx8lj-i0jbDyM9PO6/view?usp=sharing) | -| ScanNet v2 | 46.0 | 67.6 | 78.9 | 59.4 | 71.6 | [model](https://drive.google.com/file/d/1Gt1JUXXB-sBtAeuot29crAUnBwcXW7rN/view?usp=sharing) | +| S3DIS | 51.4 | 66.5 | 75.4 | - | - | [model](https://drive.google.com/file/d/1-f7I6-eIma4OilBON928N6mVcYbhiUFP/view?usp=sharing) | +| ScanNet v2 | 46.0 | 67.6 | 78.9 | 59.4 | 71.6 | [model](https://drive.google.com/file/d/1XUNRfred9QAEUY__VdmSgZxGQ7peG5ms/view?usp=sharing) | ## Training -We use the checkpoint of [HAIS](https://github.com/hustvl/HAIS) as pretrained backbone. -Download the pretrained HAIS model at [here](https://drive.google.com/file/d/1XGNswNrbjm33SwpemYxVEoK4o46EOazd/view) at put it in ``SoftGroup/`` directory. +We use the checkpoint of [HAIS](https://github.com/hustvl/HAIS) as pretrained backbone. **We have already converted the checkpoint to work on ``spconv2.x``**. Download the pretrained HAIS-spconv2 model and put it in ``SoftGroup/`` directory. + +Converted hais checkpoint: [model](https://drive.google.com/file/d/1FABsCUnxfO_VlItAzDYAwurdfcdK-scs/view?usp=sharing) ### Training S3DIS dataset +The default configs suppose training on 4 GPU. If you use smaller number of GPUs, you should reduce the learning rate linearly. + First, finetune the pretrained HAIS point-wise prediction network (backbone) on S3DIS. ``` -python train.py --config config/softgroup_fold5_backbone_s3dis.yaml +./tools/dist_train.sh config/softgroup_s3dis_backbone_fold5.yaml 4 ``` Then, train model from frozen backbone. ``` -python train.py --config config/softgroup_fold5_default_s3dis.yaml +./tools/dist_train.sh config/softgroup_s3dis_fold5.yaml 4 ``` ### Training ScanNet V2 dataset Training on ScanNet doesnot require finetuning the backbone. Just freeze pretrained backbone and train the model. ``` -python train.py --config config/softgroup_default_scannet.yaml +./tools/dist_train.sh --config config/softgroup_scannet.yaml 4 ``` ## Inference -### Testing for S3DIS dataset. ``` -CUDA_VISIBLE_DEVICES=0 python test_s3dis.py --config config/softgroup_fold5_default_s3dis.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$ -``` -### Testing for ScanNet V2 dataset. -``` -CUDA_VISIBLE_DEVICES=0 python test.py --config config/softgroup_default_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$ +./tools/dist_test.sh $CONFIG_FILE $CHECKPOINT $NUM_GPU ``` ### Bounding box evaluation of ScanNet V2 dataset. We provide script to evaluate detection performance on axis-aligned boxes from predicted/ground-truth instance. @@ -77,11 +77,6 @@ python eval_det.py ## Visualization Please refer to [visualization guide](docs/visualization.md) for visualizing ScanNet and S3DIS results. -## TODO - -- [x] Benchmark on spconv 2.x for better speed. (In progress) -- [x] Code refactor (In progress) -- [ ] Distributed training ## Citation If you find our work helpful for your research. Please consider citing our paper.