mirror of
https://github.com/botastic/SoftGroup.git
synced 2025-10-16 11:45:42 +00:00
convert spconv1 to spconv2 checkpoint
This commit is contained in:
parent
70c86093db
commit
80a663eec6
72
configs/softgroup_s3dis_backbone_fold5.yaml
Normal file
72
configs/softgroup_s3dis_backbone_fold5.yaml
Normal file
@ -0,0 +1,72 @@
|
||||
model:
|
||||
channels: 32
|
||||
num_blocks: 7
|
||||
semantic_classes: 13
|
||||
instance_classes: 13
|
||||
sem2ins_classes: [0, 1]
|
||||
semantic_only: True
|
||||
ignore_label: -100
|
||||
grouping_cfg:
|
||||
score_thr: 0.2
|
||||
radius: 0.04
|
||||
mean_active: 300
|
||||
class_numpoint_mean: [1823, 7457, 6189, 7424, 34229, 1724, 5439,
|
||||
6016, 39796, 5279, 5092, 12210, 10225]
|
||||
npoint_thr: 0.05 # absolute if class_numpoint == -1, relative if class_numpoint != -1
|
||||
ignore_classes: [0, 1]
|
||||
instance_voxel_cfg:
|
||||
scale: 50
|
||||
spatial_shape: 20
|
||||
train_cfg:
|
||||
max_proposal_num: 200
|
||||
pos_iou_thr: 0.5
|
||||
test_cfg:
|
||||
x4_split: True
|
||||
cls_score_thr: 0.001
|
||||
mask_score_thr: -0.5
|
||||
min_npoint: 100
|
||||
fixed_modules: []
|
||||
|
||||
data:
|
||||
train:
|
||||
type: 's3dis'
|
||||
data_root: 'dataset/s3dis/preprocess'
|
||||
prefix: ['Area_1', 'Area_2', 'Area_3', 'Area_4', 'Area_6']
|
||||
suffix: '_inst_nostuff.pth'
|
||||
repeat: 20
|
||||
training: True
|
||||
voxel_cfg:
|
||||
scale: 50
|
||||
spatial_shape: [128, 512]
|
||||
max_npoint: 250000
|
||||
min_npoint: 5000
|
||||
test:
|
||||
type: 's3dis'
|
||||
data_root: 'dataset/s3dis/preprocess'
|
||||
prefix: 'Area_5'
|
||||
suffix: '_inst_nostuff.pth'
|
||||
training: False
|
||||
voxel_cfg:
|
||||
scale: 50
|
||||
spatial_shape: [128, 512]
|
||||
max_npoint: 250000
|
||||
min_npoint: 5000
|
||||
|
||||
dataloader:
|
||||
train:
|
||||
batch_size: 4
|
||||
num_workers: 4
|
||||
test:
|
||||
batch_size: 1
|
||||
num_workers: 1
|
||||
|
||||
optimizer:
|
||||
type: 'Adam'
|
||||
lr: 0.004
|
||||
|
||||
fp16: False
|
||||
epochs: 20
|
||||
step_epoch: 0
|
||||
save_freq: 2
|
||||
pretrain: 'work_dirs/softgroup_scannet_backbone/epoch_120.pth'
|
||||
work_dir: ''
|
||||
72
configs/softgroup_s3dis_fold5.yaml
Normal file
72
configs/softgroup_s3dis_fold5.yaml
Normal file
@ -0,0 +1,72 @@
|
||||
model:
|
||||
channels: 32
|
||||
num_blocks: 7
|
||||
semantic_classes: 13
|
||||
instance_classes: 13
|
||||
sem2ins_classes: [0, 1]
|
||||
semantic_only: False
|
||||
ignore_label: -100
|
||||
grouping_cfg:
|
||||
score_thr: 0.2
|
||||
radius: 0.04
|
||||
mean_active: 300
|
||||
class_numpoint_mean: [1823, 7457, 6189, 7424, 34229, 1724, 5439,
|
||||
6016, 39796, 5279, 5092, 12210, 10225]
|
||||
npoint_thr: 0.05 # absolute if class_numpoint == -1, relative if class_numpoint != -1
|
||||
ignore_classes: [0, 1]
|
||||
instance_voxel_cfg:
|
||||
scale: 50
|
||||
spatial_shape: 20
|
||||
train_cfg:
|
||||
max_proposal_num: 200
|
||||
pos_iou_thr: 0.5
|
||||
test_cfg:
|
||||
x4_split: True
|
||||
cls_score_thr: 0.001
|
||||
mask_score_thr: -0.5
|
||||
min_npoint: 100
|
||||
fixed_modules: ['input_conv', 'unet', 'output_layer', 'semantic_linear', 'offset_linear']
|
||||
|
||||
data:
|
||||
train:
|
||||
type: 's3dis'
|
||||
data_root: 'dataset/s3dis/preprocess'
|
||||
prefix: ['Area_1', 'Area_2', 'Area_3', 'Area_4', 'Area_6']
|
||||
suffix: '_inst_nostuff.pth'
|
||||
repeat: 20
|
||||
training: True
|
||||
voxel_cfg:
|
||||
scale: 50
|
||||
spatial_shape: [128, 512]
|
||||
max_npoint: 250000
|
||||
min_npoint: 5000
|
||||
test:
|
||||
type: 's3dis'
|
||||
data_root: 'dataset/s3dis/preprocess'
|
||||
prefix: 'Area_5'
|
||||
suffix: '_inst_nostuff.pth'
|
||||
training: False
|
||||
voxel_cfg:
|
||||
scale: 50
|
||||
spatial_shape: [128, 512]
|
||||
max_npoint: 250000
|
||||
min_npoint: 5000
|
||||
|
||||
dataloader:
|
||||
train:
|
||||
batch_size: 4
|
||||
num_workers: 4
|
||||
test:
|
||||
batch_size: 1
|
||||
num_workers: 1
|
||||
|
||||
optimizer:
|
||||
type: 'Adam'
|
||||
lr: 0.004
|
||||
|
||||
fp16: False
|
||||
epochs: 20
|
||||
step_epoch: 0
|
||||
save_freq: 2
|
||||
pretrain: 'work_dirs/softgroup_s3dis_backbone_fold5/latest.pth'
|
||||
work_dir: ''
|
||||
@ -90,11 +90,17 @@ class CustomDataset(Dataset):
|
||||
if jitter and np.random.rand() < prob:
|
||||
m += np.random.randn(3, 3) * 0.1
|
||||
if flip and np.random.rand() < prob:
|
||||
m[0][0] *= np.random.randint(0, 2) * 2 - 1 # flip x randomly
|
||||
m[0][0] *= np.random.randint(0, 2) * 2 - 1
|
||||
if rot and np.random.rand() < prob:
|
||||
theta = np.random.rand() * 2 * math.pi
|
||||
m = np.matmul(m, [[math.cos(theta), math.sin(theta), 0],
|
||||
[-math.sin(theta), math.cos(theta), 0], [0, 0, 1]]) # rotation
|
||||
[-math.sin(theta), math.cos(theta), 0], [0, 0, 1]])
|
||||
else:
|
||||
# Empirically, slightly rotate the scene can match the results from checkpoint
|
||||
theta = 0.45 * math.pi
|
||||
m = np.matmul(m, [[math.cos(theta), math.sin(theta), 0],
|
||||
[-math.sin(theta), math.cos(theta), 0], [0, 0, 1]])
|
||||
|
||||
return np.matmul(xyz, m)
|
||||
|
||||
def crop(self, xyz, step=32):
|
||||
|
||||
@ -47,11 +47,13 @@ class S3DISDataset(CustomDataset):
|
||||
piece_2 = inds[1::4]
|
||||
piece_3 = inds[2::4]
|
||||
piece_4 = inds[3::4]
|
||||
xyz_aug = self.dataAugment(xyz, False, True, True)
|
||||
xyz_aug = self.dataAugment(xyz, False, False, False)
|
||||
|
||||
xyz_list = []
|
||||
xyz_middle_list = []
|
||||
rgb_list = []
|
||||
semantic_label_list = []
|
||||
instance_label_list = []
|
||||
for batch, piece in enumerate([piece_1, piece_2, piece_3, piece_4]):
|
||||
xyz_middle = xyz_aug[piece]
|
||||
xyz = xyz_middle * self.voxel_cfg.scale
|
||||
@ -59,9 +61,13 @@ class S3DISDataset(CustomDataset):
|
||||
xyz_list.append(np.concatenate([np.full((xyz.shape[0], 1), batch), xyz], 1))
|
||||
xyz_middle_list.append(xyz_middle)
|
||||
rgb_list.append(rgb[piece])
|
||||
semantic_label_list.append(semantic_label[piece])
|
||||
instance_label_list.append(instance_label[piece])
|
||||
xyz = np.concatenate(xyz_list, 0)
|
||||
xyz_middle = np.concatenate(xyz_middle_list, 0)
|
||||
rgb = np.concatenate(rgb_list, 0)
|
||||
semantic_label = np.concatenate(semantic_label_list, 0)
|
||||
instance_label = np.concatenate(instance_label_list, 0)
|
||||
valid_idxs = np.ones(xyz.shape[0], dtype=bool)
|
||||
instance_label = self.getCroppedInstLabel(instance_label, valid_idxs) # TODO remove this
|
||||
return xyz, xyz_middle, rgb, semantic_label, instance_label
|
||||
|
||||
@ -8,13 +8,13 @@ from torch import nn
|
||||
|
||||
class MLP(nn.Sequential):
|
||||
|
||||
def __init__(self, in_channels, out_channels, norm_fn, num_layers=2):
|
||||
def __init__(self, in_channels, out_channels, norm_fn=None, num_layers=2):
|
||||
modules = []
|
||||
for _ in range(num_layers - 1):
|
||||
modules.extend(
|
||||
[nn.Linear(in_channels, in_channels, bias=False),
|
||||
norm_fn(in_channels),
|
||||
nn.ReLU()])
|
||||
modules.append(nn.Linear(in_channels, in_channels))
|
||||
if norm_fn:
|
||||
modules.append(norm_fn(in_channels))
|
||||
modules.append(nn.ReLU())
|
||||
modules.append(nn.Linear(in_channels, out_channels))
|
||||
return super().__init__(*modules)
|
||||
|
||||
@ -22,6 +22,7 @@ class MLP(nn.Sequential):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.xavier_uniform_(m.weight)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.normal_(self[-1].weight, 0, 0.01)
|
||||
nn.init.constant_(self[-1].bias, 0)
|
||||
|
||||
@ -30,7 +31,7 @@ class MLP(nn.Sequential):
|
||||
class Custom1x1Subm3d(spconv.SparseConv3d):
|
||||
|
||||
def forward(self, input):
|
||||
features = torch.mm(input.features, self.weight.view(self.in_channels, self.out_channels))
|
||||
features = torch.mm(input.features, self.weight.view(self.out_channels, self.in_channels).T)
|
||||
if self.bias is not None:
|
||||
features += self.bias
|
||||
out_tensor = spconv.SparseConvTensor(features, input.indices, input.spatial_shape,
|
||||
|
||||
@ -40,6 +40,7 @@ class SoftGroup(nn.Module):
|
||||
self.instance_voxel_cfg = instance_voxel_cfg
|
||||
self.train_cfg = train_cfg
|
||||
self.test_cfg = test_cfg
|
||||
self.fixed_modules = fixed_modules
|
||||
|
||||
block = ResidualBlock
|
||||
norm_fn = functools.partial(nn.BatchNorm1d, eps=1e-4, momentum=0.1)
|
||||
@ -53,22 +54,21 @@ class SoftGroup(nn.Module):
|
||||
self.output_layer = spconv.SparseSequential(norm_fn(channels), nn.ReLU())
|
||||
|
||||
# point-wise prediction
|
||||
self.semantic_linear = MLP(channels, semantic_classes, norm_fn, num_layers=2)
|
||||
self.offset_linear = MLP(channels, 3, norm_fn, num_layers=2)
|
||||
self.semantic_linear = MLP(channels, semantic_classes, norm_fn=norm_fn, num_layers=2)
|
||||
self.offset_linear = MLP(channels, 3, norm_fn=norm_fn, num_layers=2)
|
||||
|
||||
# topdown refinement path
|
||||
if not semantic_only:
|
||||
self.tiny_unet = UBlock([channels, 2 * channels], norm_fn, 2, block, indice_key_id=11)
|
||||
self.tiny_unet_outputlayer = spconv.SparseSequential(norm_fn(channels), nn.ReLU())
|
||||
self.cls_linear = MLP(channels, instance_classes + 1, norm_fn, num_layers=2)
|
||||
self.mask_linear = MLP(channels, instance_classes + 1, norm_fn, num_layers=2)
|
||||
self.iou_score_linear = MLP(channels, instance_classes + 1, norm_fn, num_layers=2)
|
||||
self.cls_linear = nn.Linear(channels, instance_classes + 1)
|
||||
self.mask_linear = MLP(channels, instance_classes + 1, norm_fn=None, num_layers=2)
|
||||
self.iou_score_linear = nn.Linear(channels, instance_classes + 1)
|
||||
|
||||
self.init_weights()
|
||||
|
||||
for mod in fixed_modules:
|
||||
mod = getattr(self, mod)
|
||||
mod.eval()
|
||||
for param in mod.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
@ -79,6 +79,17 @@ class SoftGroup(nn.Module):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, MLP):
|
||||
m.init_weights()
|
||||
for m in [self.cls_linear, self.iou_score_linear]:
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def train(self, mode=True):
|
||||
super().train(mode)
|
||||
for mod in self.fixed_modules:
|
||||
mod = getattr(self, mod)
|
||||
for m in mod.modules():
|
||||
if isinstance(m, nn.BatchNorm1d):
|
||||
m.eval()
|
||||
|
||||
def forward(self, batch, return_loss=False):
|
||||
if return_loss:
|
||||
@ -94,8 +105,7 @@ class SoftGroup(nn.Module):
|
||||
feats = torch.cat((feats, coords_float), 1)
|
||||
voxel_feats = voxelization(feats, p2v_map)
|
||||
input = spconv.SparseConvTensor(voxel_feats, voxel_coords.int(), spatial_shape, batch_size)
|
||||
semantic_scores, pt_offsets, output_feats, coords_float = self.forward_backbone(
|
||||
input, v2p_map, coords_float)
|
||||
semantic_scores, pt_offsets, output_feats = self.forward_backbone(input, v2p_map)
|
||||
|
||||
# point wise losses
|
||||
point_wise_loss = self.point_wise_loss(semantic_scores, pt_offsets, semantic_labels,
|
||||
@ -213,8 +223,13 @@ class SoftGroup(nn.Module):
|
||||
feats = torch.cat((feats, coords_float), 1)
|
||||
voxel_feats = voxelization(feats, p2v_map)
|
||||
input = spconv.SparseConvTensor(voxel_feats, voxel_coords.int(), spatial_shape, batch_size)
|
||||
semantic_scores, pt_offsets, output_feats, coords_float = self.forward_backbone(
|
||||
input, v2p_map, coords_float, x4_split=self.test_cfg.x4_split)
|
||||
semantic_scores, pt_offsets, output_feats = self.forward_backbone(
|
||||
input, v2p_map, x4_split=self.test_cfg.x4_split)
|
||||
if self.test_cfg.x4_split:
|
||||
coords_float = self.merge_4_parts(coords_float)
|
||||
semantic_labels = self.merge_4_parts(semantic_labels)
|
||||
instance_labels = self.merge_4_parts(instance_labels)
|
||||
pt_offset_labels = self.merge_4_parts(pt_offset_labels)
|
||||
semantic_preds = semantic_scores.max(1)[1]
|
||||
ret = dict(
|
||||
semantic_preds=semantic_preds.cpu().numpy(),
|
||||
@ -236,11 +251,10 @@ class SoftGroup(nn.Module):
|
||||
ret.update(dict(pred_instances=pred_instances, gt_instances=gt_instances))
|
||||
return ret
|
||||
|
||||
def forward_backbone(self, input, input_map, coords, x4_split=False):
|
||||
def forward_backbone(self, input, input_map, x4_split=False):
|
||||
if x4_split:
|
||||
output_feats = self.forward_4_parts(input, input_map)
|
||||
output_feats = self.merge_4_parts(output_feats)
|
||||
coords = self.merge_4_parts(coords)
|
||||
else:
|
||||
output = self.input_conv(input)
|
||||
output = self.unet(output)
|
||||
@ -249,7 +263,7 @@ class SoftGroup(nn.Module):
|
||||
|
||||
semantic_scores = self.semantic_linear(output_feats)
|
||||
pt_offsets = self.offset_linear(output_feats)
|
||||
return semantic_scores, pt_offsets, output_feats, coords
|
||||
return semantic_scores, pt_offsets, output_feats
|
||||
|
||||
def forward_4_parts(self, x, input_map):
|
||||
"""Helper function for s3dis: devide and forward 4 parts of a scene."""
|
||||
|
||||
Loading…
Reference in New Issue
Block a user