diff --git a/README.md b/README.md index 810be89..32a7411 100644 --- a/README.md +++ b/README.md @@ -3,7 +3,7 @@ ![Architecture](./docs/architecture.png) -We provide code for reproducing results of the paper [SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022)](https://arxiv.org/abs/2203.01509) +We provide code for reproducing results of the paper **SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022)** Author: Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, and Chang D. Yoo. @@ -25,93 +25,12 @@ Existing state-of-the-art 3D instance segmentation methods perform semantic segm ## Installation -1\) Environment - -* Python 3.x -* Pytorch 1.1 or higher -* CUDA 9.2 or higher -* gcc-5.4 or higher - -Create a conda virtual environment and activate it. -``` -conda create -n softgroup python=3.7 -conda activate softgroup -``` - - -2\) Clone the repository. -``` -git clone https://github.com/thangvubk/SoftGroup.git --recursive -``` - - -3\) Install the requirements. -``` -cd SoftGroup -pip install -r requirements.txt -conda install -c bioconda google-sparsehash -``` - -4\) Install spconv - - -* Install the dependencies. -``` -sudo apt-get install libboost-all-dev -sudo apt-get install libsparsehash-dev - -``` - -* Compile the spconv library. -``` -cd SoftGroup/lib/spconv -python setup.py bdist_wheel -pip install dist/{WHEEL_FILE_NAME}.whl -``` - - -5\) Compile the external C++ and CUDA ops. -``` -cd SoftGroup/lib/softgroup_ops -export CPLUS_INCLUDE_PATH={conda_env_path}/softgroup/include:$CPLUS_INCLUDE_PATH -python setup.py build_ext develop -``` -{conda_env_path} is the location of the created conda environment, e.g., `/anaconda3/envs`. +Please refer to [installation guide](docs/installation.md). ## Data Preparation - -1\) Download the [ScanNet](http://www.scan-net.org/) v2 dataset. - -2\) Put the downloaded ``scans`` and ``scans_test`` folder as follows. - -``` -SoftGroup -├── dataset -│ ├── scannetv2 -│ │ ├── scans -│ │ ├── scans_test -``` - -3\) Split and preprocess data -``` -cd SoftGroup/dataset/scannetv2 -bash prepare_data.sh -``` - -The script data into train/val/test folder and preprocess the data. After running the script the scannet dataset structure should look like below. -``` -SoftGroup -├── dataset -│ ├── scannetv2 -│ │ ├── scans -│ │ ├── scans_test -│ │ ├── train -│ │ ├── val -│ │ ├── test -│ │ ├── val_gt -``` +Please refer to [data preparation](dataset/README.md) for preparing the S3DIS and ScanNet v2 dataset. ## Pretrained models