## Visualization Before visualization, you need to change ``save_semantic``, ``save_pt_offsets``, ``save_instance`` to True in the config file and run the inference to write the output predictions. There are two options for visualization: - Visualization using through a pop-up using open3D (default). Prerequisite: ``pip install open3D==0.8.0`` - Write point clouds to ``.ply`` file then use an visualization application such as [MeshLab](https://www.meshlab.net/) to see the results. Just pass the arg ``--out YOUR_FILE.ply`` to enable this option. After inference, run visualization by execute the following command ``` python visualization.py --dataset {} --prediction_path --split {} --scene_name {} --task {} --out {} usage: visualization.py [-h] [--dataset {scannet,s3dis}] [--prediction_path PREDICTION_PATH] [--data_split DATA_SPLIT] [--room_name ROOM_NAME] [--task TASK] [--out OUT] optional arguments: --dataset {scannet,s3dis} dataset for visualization --prediction_path PREDICTION_PATH path to the prediction results --data_split DATA_SPLIT train/val/test for scannet or Area_ID for s3dis --room_name ROOM_NAME room_name --task TASK input / semantic_gt / semantic_pred / offset_semantic_pred / instance_gt / instance_pred --out OUT output point cloud file in FILE.ply format ```