/* Ball Query with BatchIdx & Clustering Algorithm Written by Li Jiang All Rights Reserved 2020. Modified by Thang Vu - Remove semantic label in clustering */ #include "bfs_cluster.h" /* =================== ballquery_batch_p================================= */ // input xyz: (n, 3) float // input batch_idxs: (n) int // input batch_offsets: (B+1) int, batch_offsets[-1] // output idx: (n * meanActive) dim 0 for number of points in the ball, idx in n // output start_len: (n, 2), int int ballquery_batch_p(at::Tensor xyz_tensor, at::Tensor batch_idxs_tensor, at::Tensor batch_offsets_tensor, at::Tensor idx_tensor, at::Tensor start_len_tensor, int n, int meanActive, float radius) { const float *xyz = xyz_tensor.data_ptr(); const int *batch_idxs = batch_idxs_tensor.data_ptr(); const int *batch_offsets = batch_offsets_tensor.data_ptr(); int *idx = idx_tensor.data_ptr(); int *start_len = start_len_tensor.data_ptr(); cudaStream_t stream = at::cuda::getCurrentCUDAStream(); int cumsum = ballquery_batch_p_cuda(n, meanActive, radius, xyz, batch_idxs, batch_offsets, idx, start_len, stream); return cumsum; } ConnectedComponent find_cc(Int idx, Int *ball_query_idxs, int *start_len, int *visited) { ConnectedComponent cc; cc.addPoint(idx); visited[idx] = 1; std::queue Q; assert(Q.empty()); Q.push(idx); while (!Q.empty()) { Int cur = Q.front(); Q.pop(); int start = start_len[cur * 2]; int len = start_len[cur * 2 + 1]; for (Int i = start; i < start + len; i++) { Int idx_i = ball_query_idxs[i]; if (visited[idx_i] == 1) continue; cc.addPoint(idx_i); visited[idx_i] = 1; Q.push(idx_i); } } return cc; } int get_clusters(float *class_numpoint_mean, int *ball_query_idxs, int *start_len, const int nPoint, float threshold, ConnectedComponents &clusters, const int class_id) { int *visited = new int[nPoint]{0}; float _class_numpoint_mean, thr; int sumNPoint = 0; for (int i = 0; i < nPoint; i++) { if (visited[i] == 0) { ConnectedComponent CC = find_cc(i, ball_query_idxs, start_len, visited); _class_numpoint_mean = class_numpoint_mean[class_id]; // if _class_num_point_mean is not defined (-1) directly use threshold if (_class_numpoint_mean == -1) { thr = threshold; } else { thr = threshold * _class_numpoint_mean; } if ((int)CC.pt_idxs.size() >= thr) { clusters.push_back(CC); sumNPoint += (int)CC.pt_idxs.size(); } } } delete[] visited; return sumNPoint; } // convert from ConnectedComponents to (idxs, offsets) representation void fill_cluster_idxs_(ConnectedComponents &CCs, int *cluster_idxs, int *cluster_offsets) { for (int i = 0; i < (int)CCs.size(); i++) { cluster_offsets[i + 1] = cluster_offsets[i] + (int)CCs[i].pt_idxs.size(); for (int j = 0; j < (int)CCs[i].pt_idxs.size(); j++) { int idx = CCs[i].pt_idxs[j]; cluster_idxs[(cluster_offsets[i] + j) * 2 + 0] = i; cluster_idxs[(cluster_offsets[i] + j) * 2 + 1] = idx; } } } // input: class_numpoint_mean_tensor // input: ball_query_idxs, int, (nActive) // input: start_len, int, (N, 2) // output: cluster_idxs, int (sumNPoint, 2), dim 0 for cluster_id, dim 1 for // corresponding point idxs in N // output: cluster_offsets, int (nCluster + 1) void bfs_cluster(at::Tensor class_numpoint_mean_tensor, at::Tensor ball_query_idxs_tensor, at::Tensor start_len_tensor, at::Tensor cluster_idxs_tensor, at::Tensor cluster_offsets_tensor, const int N, float threshold, const int class_id) { float *class_numpoint_mean = class_numpoint_mean_tensor.data_ptr(); Int *ball_query_idxs = ball_query_idxs_tensor.data_ptr(); int *start_len = start_len_tensor.data_ptr(); ConnectedComponents CCs; int sumNPoint = get_clusters(class_numpoint_mean, ball_query_idxs, start_len, N, threshold, CCs, class_id); int nCluster = (int)CCs.size(); cluster_idxs_tensor.resize_({sumNPoint, 2}); cluster_offsets_tensor.resize_({nCluster + 1}); cluster_idxs_tensor.zero_(); cluster_offsets_tensor.zero_(); int *cluster_idxs = cluster_idxs_tensor.data_ptr(); int *cluster_offsets = cluster_offsets_tensor.data_ptr(); fill_cluster_idxs_(CCs, cluster_idxs, cluster_offsets); }