import argparse import datetime import os import os.path as osp import shutil import time import torch import yaml from munch import Munch from softgroup.data import build_dataloader, build_dataset from softgroup.evaluation import ScanNetEval, evaluate_semantic_acc, evaluate_semantic_miou from softgroup.model import SoftGroup from softgroup.util import (AverageMeter, build_optimizer, checkpoint_save, cosine_lr_after_step, get_max_memory, get_root_logger, init_dist, is_multiple, is_power2, load_checkpoint) from tensorboardX import SummaryWriter from torch.nn.parallel import DistributedDataParallel from tqdm import tqdm def get_args(): parser = argparse.ArgumentParser('SoftGroup') parser.add_argument('config', type=str, help='path to config file') parser.add_argument('--dist', action='store_true', help='run with distributed parallel') parser.add_argument('--resume', type=str, help='path to resume from') parser.add_argument('--work_dir', type=str, help='working directory') args = parser.parse_args() return args if __name__ == '__main__': args = get_args() cfg_txt = open(args.config, 'r').read() cfg = Munch.fromDict(yaml.safe_load(cfg_txt)) if args.dist: init_dist() # work_dir & logger if args.work_dir is not None: cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) os.makedirs(osp.abspath(cfg.work_dir), exist_ok=True) timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file) logger.info(f'Config:\n{cfg_txt}') logger.info(f'Distributed: {args.dist}') shutil.copy(args.config, osp.join(cfg.work_dir, osp.basename(args.config))) writer = SummaryWriter(cfg.work_dir) # model model = SoftGroup(**cfg.model).cuda() if args.dist: model = DistributedDataParallel(model, device_ids=[torch.cuda.current_device()]) # data train_set = build_dataset(cfg.data.train, logger) val_set = build_dataset(cfg.data.test, logger) train_loader = build_dataloader( train_set, training=True, dist=args.dist, **cfg.dataloader.train) val_loader = build_dataloader(val_set, training=False, **cfg.dataloader.test) # optim optimizer = build_optimizer(model, cfg.optimizer) # pretrain, resume start_epoch = 1 if args.resume: logger.info(f'Resume from {args.resume}') start_epoch = load_checkpoint(args.resume, logger, model, optimizer=optimizer) elif cfg.pretrain: logger.info(f'Load pretrain from {cfg.pretrain}') load_checkpoint(cfg.pretrain, logger, model) # train and val logger.info('Training') for epoch in range(start_epoch, cfg.epochs + 1): model.train() iter_time = AverageMeter() data_time = AverageMeter() meter_dict = {} end = time.time() if train_loader.sampler is not None and args.dist: train_loader.sampler.set_epoch(epoch) for i, batch in enumerate(train_loader, start=1): data_time.update(time.time() - end) cosine_lr_after_step(optimizer, cfg.optimizer.lr, epoch - 1, cfg.step_epoch, cfg.epochs) loss, log_vars = model(batch, return_loss=True) # meter_dict for k, v in log_vars.items(): if k not in meter_dict.keys(): meter_dict[k] = AverageMeter() meter_dict[k].update(v[0], v[1]) # backward optimizer.zero_grad() loss.backward() optimizer.step() # time and print current_iter = (epoch - 1) * len(train_loader) + i max_iter = cfg.epochs * len(train_loader) remain_iter = max_iter - current_iter iter_time.update(time.time() - end) end = time.time() remain_time = remain_iter * iter_time.avg remain_time = str(datetime.timedelta(seconds=int(remain_time))) lr = optimizer.param_groups[0]['lr'] writer.add_scalar('learning_rate', lr, current_iter) for k, v in meter_dict.items(): writer.add_scalar(k, v.val, current_iter) if is_multiple(i, 10): log_str = f'Epoch [{epoch}/{cfg.epochs}][{i}/{len(train_loader)}] ' log_str += f'lr: {lr:.2g}, eta: {remain_time}, mem: {get_max_memory()}, '\ f'data_time: {data_time.val:.2f}, iter_time: {iter_time.val:.2f}' for k, v in meter_dict.items(): log_str += f', {k}: {v.val:.4f}' logger.info(log_str) checkpoint_save(epoch, model, optimizer, cfg.work_dir, cfg.save_freq) # validation if is_multiple(epoch, cfg.save_freq) or is_power2(epoch): all_sem_preds, all_sem_labels, all_pred_insts, all_gt_insts = [], [], [], [] logger.info('Validation') with torch.no_grad(): model = model.eval() for batch in tqdm(val_loader, total=len(val_loader)): ret = model(batch) all_sem_preds.append(ret['semantic_preds']) all_sem_labels.append(ret['semantic_labels']) if not cfg.model.semantic_only: all_pred_insts.append(ret['pred_instances']) all_gt_insts.append(ret['gt_instances']) if not cfg.model.semantic_only: logger.info('Evaluate instance segmentation') scannet_eval = ScanNetEval(val_loader.dataset.CLASSES) scannet_eval.evaluate(all_pred_insts, all_gt_insts) logger.info('Evaluate semantic segmentation') miou = evaluate_semantic_miou(all_sem_preds, all_sem_labels, cfg.model.ignore_label, logger) acc = evaluate_semantic_acc(all_sem_preds, all_sem_labels, cfg.model.ignore_label, logger) writer.add_scalar('mIoU', miou, epoch) writer.add_scalar('Acc', acc, epoch) writer.flush()