SoftGroup/train.py
2022-04-09 03:17:01 +00:00

181 lines
7.0 KiB
Python

import argparse
import datetime
import os
import os.path as osp
import random
import shutil
import sys
import time
import numpy as np
import torch
import yaml
from munch import Munch
from softgroup.data import build_dataloader, build_dataset
from softgroup.evaluation import ScanNetEval, evaluate_semantic_acc, evaluate_semantic_miou
from softgroup.model import SoftGroup
from softgroup.util import (AverageMeter, build_optimizer, checkpoint_save, cosine_lr_after_step,
get_max_memory, get_root_logger, is_multiple, is_power2,
load_checkpoint)
from tensorboardX import SummaryWriter
from tqdm import tqdm
def eval_epoch(val_loader, model, model_fn, epoch):
logger.info('>>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>')
am_dict = {}
with torch.no_grad():
model.eval()
start_epoch = time.time()
for i, batch in enumerate(val_loader):
# prepare input and forward
loss, preds, visual_dict, meter_dict = model_fn(
batch, model, epoch, semantic_only=cfg.semantic_only)
for k, v in meter_dict.items():
if k not in am_dict.keys():
am_dict[k] = AverageMeter()
am_dict[k].update(v[0], v[1])
sys.stdout.write('\riter: {}/{} loss: {:.4f}({:.4f})'.format(
i + 1, len(val_loader), am_dict['loss'].val, am_dict['loss'].avg))
logger.info('epoch: {}/{}, val loss: {:.4f}, time: {}s'.format(
epoch, cfg.epochs, am_dict['loss'].avg,
time.time() - start_epoch))
for k in am_dict.keys():
if k in visual_dict.keys():
writer.add_scalar(k + '_eval', am_dict[k].avg, epoch)
def get_args():
parser = argparse.ArgumentParser('SoftGroup')
parser.add_argument('config', type=str, help='path to config file')
parser.add_argument('--resume', type=str, help='path to resume from')
parser.add_argument('--work_dir', type=str, help='working directory')
args = parser.parse_args()
return args
if __name__ == '__main__':
# TODO remove these setup
torch.backends.cudnn.enabled = False
test_seed = 123
random.seed(test_seed)
np.random.seed(test_seed)
torch.manual_seed(test_seed)
torch.cuda.manual_seed_all(test_seed)
args = get_args()
cfg_txt = open(args.config, 'r').read()
cfg = Munch.fromDict(yaml.safe_load(cfg_txt))
# work_dir & logger
if args.work_dir is not None:
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0])
os.makedirs(osp.abspath(cfg.work_dir), exist_ok=True)
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file)
logger.info(f'Config:\n{cfg_txt}')
shutil.copy(args.config, osp.join(cfg.work_dir, osp.basename(args.config)))
writer = SummaryWriter(cfg.work_dir)
# model
model = SoftGroup(**cfg.model).cuda()
# data
train_set = build_dataset(cfg.data.train, logger)
val_set = build_dataset(cfg.data.test, logger)
train_loader = build_dataloader(train_set, training=True, **cfg.dataloader.train)
val_loader = build_dataloader(val_set, training=False, **cfg.dataloader.test)
# optim
optimizer = build_optimizer(model, cfg.optimizer)
# pretrain, resume
start_epoch = 1
if args.resume:
logger.info(f'Resume from {args.resume}')
start_epoch = load_checkpoint(args.resume, logger, model, optimizer=optimizer)
elif cfg.pretrain:
logger.info(f'Load pretrain from {cfg.pretrain}')
load_checkpoint(cfg.pretrain, logger, model)
# train and val
logger.info('Training')
for epoch in range(start_epoch, cfg.epochs + 1):
model.train()
iter_time = AverageMeter()
data_time = AverageMeter()
meter_dict = {}
end = time.time()
for i, batch in enumerate(train_loader, start=1):
data_time.update(time.time() - end)
cosine_lr_after_step(optimizer, cfg.optimizer.lr, epoch - 1, cfg.step_epoch, cfg.epochs)
loss, log_vars = model(batch, return_loss=True)
# meter_dict
for k, v in log_vars.items():
if k not in meter_dict.keys():
meter_dict[k] = AverageMeter()
meter_dict[k].update(v[0], v[1])
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
# time and print
current_iter = (epoch - 1) * len(train_loader) + i
max_iter = cfg.epochs * len(train_loader)
remain_iter = max_iter - current_iter
iter_time.update(time.time() - end)
end = time.time()
remain_time = remain_iter * iter_time.avg
remain_time = str(datetime.timedelta(seconds=int(remain_time)))
lr = optimizer.param_groups[0]['lr']
writer.add_scalar('learning_rate', lr, current_iter)
for k, v in meter_dict.items():
writer.add_scalar(k, v.val, current_iter)
if i % 10 == 0:
log_str = f'Epoch [{epoch}/{cfg.epochs}][{i}/{len(train_loader)}] '
log_str += f'lr: {lr:.2g}, eta: {remain_time}, mem: {get_max_memory()}, '\
f'data_time: {data_time.val:.2f}, iter_time: {iter_time.val:.2f}'
for k, v in meter_dict.items():
log_str += f', {k}: {v.val:.4f}'
logger.info(log_str)
checkpoint_save(epoch, model, optimizer, cfg.work_dir, cfg.save_freq)
# validation
if not (is_multiple(epoch, cfg.save_freq) or is_power2(epoch)):
continue
all_sem_preds, all_sem_labels, all_pred_insts, all_gt_insts = [], [], [], []
logger.info('Validation')
with torch.no_grad():
model = model.eval()
for batch in tqdm(val_loader, total=len(val_loader)):
ret = model(batch)
all_sem_preds.append(ret['semantic_preds'])
all_sem_labels.append(ret['semantic_labels'])
if not cfg.model.semantic_only:
all_pred_insts.append(ret['pred_instances'])
all_gt_insts.append(ret['gt_instances'])
if not cfg.model.semantic_only:
logger.info('Evaluate instance segmentation')
scannet_eval = ScanNetEval(val_loader.dataset.CLASSES)
scannet_eval.evaluate(all_pred_insts, all_gt_insts)
logger.info('Evaluate semantic segmentation')
miou = evaluate_semantic_miou(all_sem_preds, all_sem_labels, cfg.model.ignore_label,
logger)
acc = evaluate_semantic_acc(all_sem_preds, all_sem_labels, cfg.model.ignore_label,
logger)
writer.add_scalar('mIoU', miou, epoch)
writer.add_scalar('Acc', acc, epoch)