SoftGroup/tools/train.py

186 lines
7.5 KiB
Python

import argparse
import datetime
import os
import os.path as osp
import shutil
import time
import torch
import yaml
from munch import Munch
from softgroup.data import build_dataloader, build_dataset
from softgroup.evaluation import (ScanNetEval, evaluate_offset_mae, evaluate_semantic_acc,
evaluate_semantic_miou)
from softgroup.model import SoftGroup
from softgroup.util import (AverageMeter, SummaryWriter, build_optimizer, checkpoint_save,
collect_results_gpu, cosine_lr_after_step, get_dist_info,
get_max_memory, get_root_logger, init_dist, is_main_process,
is_multiple, is_power2, load_checkpoint)
from torch.nn.parallel import DistributedDataParallel
from tqdm import tqdm
def get_args():
parser = argparse.ArgumentParser('SoftGroup')
parser.add_argument('config', type=str, help='path to config file')
parser.add_argument('--dist', action='store_true', help='run with distributed parallel')
parser.add_argument('--resume', type=str, help='path to resume from')
parser.add_argument('--work_dir', type=str, help='working directory')
parser.add_argument('--skip_validate', action='store_true', help='skip validation')
args = parser.parse_args()
return args
def train(epoch, model, optimizer, scaler, train_loader, cfg, logger, writer):
model.train()
iter_time = AverageMeter(True)
data_time = AverageMeter(True)
meter_dict = {}
end = time.time()
if train_loader.sampler is not None and cfg.dist:
train_loader.sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader, start=1):
data_time.update(time.time() - end)
cosine_lr_after_step(optimizer, cfg.optimizer.lr, epoch - 1, cfg.step_epoch, cfg.epochs)
with torch.cuda.amp.autocast(enabled=cfg.fp16):
loss, log_vars = model(batch, return_loss=True)
# meter_dict
for k, v in log_vars.items():
if k not in meter_dict.keys():
meter_dict[k] = AverageMeter()
meter_dict[k].update(v)
# backward
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# time and print
remain_iter = len(train_loader) * (cfg.epochs - epoch + 1) - i
iter_time.update(time.time() - end)
end = time.time()
remain_time = remain_iter * iter_time.avg
remain_time = str(datetime.timedelta(seconds=int(remain_time)))
lr = optimizer.param_groups[0]['lr']
if is_multiple(i, 10):
log_str = f'Epoch [{epoch}/{cfg.epochs}][{i}/{len(train_loader)}] '
log_str += f'lr: {lr:.2g}, eta: {remain_time}, mem: {get_max_memory()}, '\
f'data_time: {data_time.val:.2f}, iter_time: {iter_time.val:.2f}'
for k, v in meter_dict.items():
log_str += f', {k}: {v.val:.4f}'
logger.info(log_str)
writer.add_scalar('train/learning_rate', lr, epoch)
for k, v in meter_dict.items():
writer.add_scalar(f'train/{k}', v.avg, epoch)
checkpoint_save(epoch, model, optimizer, cfg.work_dir, cfg.save_freq)
def validate(epoch, model, val_loader, cfg, logger, writer):
logger.info('Validation')
results = []
all_sem_preds, all_sem_labels, all_offset_preds, all_offset_labels = [], [], [], []
all_inst_labels, all_pred_insts, all_gt_insts = [], [], []
_, world_size = get_dist_info()
progress_bar = tqdm(total=len(val_loader) * world_size, disable=not is_main_process())
val_set = val_loader.dataset
with torch.no_grad():
model.eval()
for i, batch in enumerate(val_loader):
result = model(batch)
results.append(result)
progress_bar.update(world_size)
progress_bar.close()
results = collect_results_gpu(results, len(val_set))
if is_main_process():
for res in results:
all_sem_preds.append(res['semantic_preds'])
all_sem_labels.append(res['semantic_labels'])
all_offset_preds.append(res['offset_preds'])
all_offset_labels.append(res['offset_labels'])
all_inst_labels.append(res['instance_labels'])
if not cfg.model.semantic_only:
all_pred_insts.append(res['pred_instances'])
all_gt_insts.append(res['gt_instances'])
if not cfg.model.semantic_only:
logger.info('Evaluate instance segmentation')
scannet_eval = ScanNetEval(val_set.CLASSES)
eval_res = scannet_eval.evaluate(all_pred_insts, all_gt_insts)
writer.add_scalar('val/AP', eval_res['all_ap'], epoch)
writer.add_scalar('val/AP_50', eval_res['all_ap_50%'], epoch)
writer.add_scalar('val/AP_25', eval_res['all_ap_25%'], epoch)
logger.info('Evaluate semantic segmentation and offset MAE')
miou = evaluate_semantic_miou(all_sem_preds, all_sem_labels, cfg.model.ignore_label, logger)
acc = evaluate_semantic_acc(all_sem_preds, all_sem_labels, cfg.model.ignore_label, logger)
mae = evaluate_offset_mae(all_offset_preds, all_offset_labels, all_inst_labels,
cfg.model.ignore_label, logger)
writer.add_scalar('val/mIoU', miou, epoch)
writer.add_scalar('val/Acc', acc, epoch)
writer.add_scalar('val/Offset MAE', mae, epoch)
def main():
args = get_args()
cfg_txt = open(args.config, 'r').read()
cfg = Munch.fromDict(yaml.safe_load(cfg_txt))
if args.dist:
init_dist()
cfg.dist = args.dist
# work_dir & logger
if args.work_dir:
cfg.work_dir = args.work_dir
else:
cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0])
os.makedirs(osp.abspath(cfg.work_dir), exist_ok=True)
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file)
logger.info(f'Config:\n{cfg_txt}')
logger.info(f'Distributed: {args.dist}')
logger.info(f'Mix precision training: {cfg.fp16}')
shutil.copy(args.config, osp.join(cfg.work_dir, osp.basename(args.config)))
writer = SummaryWriter(cfg.work_dir)
# model
model = SoftGroup(**cfg.model).cuda()
if args.dist:
model = DistributedDataParallel(model, device_ids=[torch.cuda.current_device()])
scaler = torch.cuda.amp.GradScaler(enabled=cfg.fp16)
# data
train_set = build_dataset(cfg.data.train, logger)
val_set = build_dataset(cfg.data.test, logger)
train_loader = build_dataloader(
train_set, training=True, dist=args.dist, **cfg.dataloader.train)
val_loader = build_dataloader(val_set, training=False, dist=args.dist, **cfg.dataloader.test)
# optim
optimizer = build_optimizer(model, cfg.optimizer)
# pretrain, resume
start_epoch = 1
if args.resume:
logger.info(f'Resume from {args.resume}')
start_epoch = load_checkpoint(args.resume, logger, model, optimizer=optimizer)
elif cfg.pretrain:
logger.info(f'Load pretrain from {cfg.pretrain}')
load_checkpoint(cfg.pretrain, logger, model)
# train and val
logger.info('Training')
for epoch in range(start_epoch, cfg.epochs + 1):
train(epoch, model, optimizer, scaler, train_loader, cfg, logger, writer)
if not args.skip_validate and (is_multiple(epoch, cfg.save_freq) or is_power2(epoch)):
validate(epoch, model, val_loader, cfg, logger, writer)
writer.flush()
if __name__ == '__main__':
main()