diff --git a/example_fit.py b/example_fit.py index 7ed03b7..0275e34 100644 --- a/example_fit.py +++ b/example_fit.py @@ -29,13 +29,37 @@ print("config loaded") dataset = SMPLyDataset() +sample_index = 2 + +sample_transforms = [ + [ + [0.929741, -0.01139284, 0.36803687, 0.68193704], + [0.01440641, 0.999881, -0.00544171, 0.35154277], + [-0.36793125, 0.01036147, 0.9297949, 0.52250534], + [0, 0, 0, 1] + ], + [ + [0.9993728, -0.00577453, 0.03493736, 0.9268496], + [0.00514091, 0.9998211, 0.01819922, -0.07861858], + [-0.0350362, -0.0180082, 0.99922377, 0.00451744], + [0, 0, 0, 1] + ], + [ + [4.9928, 0.0169, 0.5675, 0.3011], + [-0.0289, 4.9951, 0.5460, 0.1138], + [-0.0135, -0.0093, 0.9999, 5.4520], + [0.0000, 0.0000, 0.0000, 1.0000] + ] +] + + # ------------------------------ # Load data # ------------------------------ l = SMPLyModel(conf['modelPath']) model = l.create_model() keypoints, conf = dataset[2] -img = cv2.imread("samples/003.png") +img_path = "./samples/" + str(sample_index + 1).zfill(3) + ".png" # --------------------------------- # Generate model and get joints @@ -61,7 +85,7 @@ r = Renderer() r.render_model(model, model_out) r.render_joints(joints) r.render_keypoints(keypoints) -r.render_image(img) +r.render_image_from_path(img_path) # render openpose torso markers r.render_points( @@ -83,28 +107,8 @@ r.start() dtype = torch.float device = torch.device('cpu') -# torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') - -# camera_transformation = torch.tensor([ -# [0.929741, -0.01139284, 0.36803687, 0.68193704], -# [0.01440641, 0.999881, -0.00544171, 0.35154277], -# [-0.36793125, 0.01036147, 0.9297949, 0.52250534], -# [0, 0, 0, 1] -# ]).to(device=device, dtype=dtype) camera_transformation = torch.tensor( - [[0.9993728, -0.00577453, 0.03493736, 0.9268496], - [0.00514091, 0.9998211, 0.01819922, -0.07861858], - [-0.0350362, -0.0180082, 0.99922377, 0.00451744], - [0, 0, 0, 1]] -).to(device=device, dtype=dtype) - -# camera_transformation = torch.tensor( -# [[ 4.9928, 0.0169, 0.5675, 0.3011], -# [-0.0289, 4.9951, 0.5460, 0.1138], -# [-0.0135, -0.0093, 0.9999, 5.4520], -# [ 0.0000, 0.0000, 0.0000, 1.0000]] -# ).to(device=device, dtype=dtype) -#camera_transformation = torch.from_numpy(np.eye(4)).to(device=device, dtype=dtype) + sample_transforms[1]).to(device=device, dtype=dtype) camera = SimpleCamera(dtype, device, z_scale=1, transform_mat=camera_transformation)