# library imports from train import optimize_sample import matplotlib.pyplot as plt # local imports from utils.general import load_config from dataset import SMPLyDataset # load and select sample config = load_config() dataset = SMPLyDataset.from_config(config=config) sample_index = 0 # train for pose pose, train_loss, step_imgs = optimize_sample( sample_index, dataset, config ) # color = r.get_snapshot() # plt.imshow(color) # plt.show() # fig, ax = plt.subplots() # name = getfilename_from_conf(config=config, index=sample_index) # ax.plot(train_loss[1::], label='sgd') # ax.set(xlabel="Training iteration", ylabel="Loss", title='Training loss') # fig.savefig("results/" + name + ".png") # ax.legend() # plt.show()