body-pose-animation/train_pose.py
2021-02-07 17:40:13 +01:00

249 lines
7.3 KiB
Python

from camera_estimation import TorchCameraEstimate
from modules.angle_clip import AngleClipper
from modules.angle import AnglePriorsLoss
import smplx
import torch
from tqdm import tqdm
import torchgeometry as tgm
# internal imports
from modules.pose import BodyPose
from modules.filter import JointFilter
from model import VPoserModel
from modules.camera import SimpleCamera
from renderer import Renderer
def train_pose(
model: smplx.SMPL,
keypoints,
keypoint_conf,
camera: SimpleCamera,
model_type="smplx",
learning_rate=1e-3,
device=torch.device('cuda'),
dtype=torch.float32,
renderer: Renderer = None,
optimizer=None,
optimizer_type="LBFGS",
iterations=60,
useBodyPrior=False,
useAnglePrior=False,
useConfWeights=False,
use_angle_sum_loss=False,
angle_sum_weight=0.1,
patience=10,
body_prior_weight=2,
angle_prior_weight=0.5,
body_mean_loss=False,
body_mean_weight=0.01
):
print("[pose] starting training")
print("[pose] dtype=", dtype)
loss_layer = torch.nn.MSELoss().to(device=device, dtype=dtype) # MSELoss()
clip_loss_layer = AngleClipper().to(device=device, dtype=dtype)
# make sure camera module is on the correct device
camera = camera.to(device=device, dtype=dtype)
# setup keypoint data
keypoints = torch.tensor(keypoints).to(device=device, dtype=dtype)
# get a list of openpose conf values
keypoints_conf = torch.tensor(keypoint_conf).to(device=device, dtype=dtype)
# create filter layer to ignore unused joints, keypoints during optimization
filter_layer = JointFilter(
model_type=model_type, filter_dims=3).to(device=device, dtype=dtype)
# setup torch modules
pose_layer = BodyPose(model, dtype=dtype, device=device,
useBodyMeanAngles=False).to(device=device, dtype=dtype)
parameters = [pose_layer.body_pose]
# loss layers
if useBodyPrior:
vposer = VPoserModel()
# TODO: handle this in vposer model
vposer.model.to(device=device, dtype=dtype)
latent_body = vposer.get_pose()
latent_pose = vposer.get_vposer_latent()
parameters.append(latent_pose)
if useAnglePrior:
angle_prior_layer = AnglePriorsLoss(
dtype=dtype, device=device)
if optimizer is None:
if optimizer_type.lower() == "lbfgs":
optimizer = torch.optim.LBFGS
elif optimizer_type.lower() == "adam":
optimizer = torch.optim.Adam
optimizer = optimizer(parameters, learning_rate)
pbar = tqdm(total=iterations)
def predict():
pose_extra = None
# if useBodyPrior:
# body = vposer_layer()
# poZ = body.poZ_body
# pose_extra = body.pose_body
# return joints based on current model state
body_joints, cur_pose = pose_layer()
# compute homogeneous coordinates and project them to 2D space
points = tgm.convert_points_to_homogeneous(body_joints)
points = camera(points).squeeze()
points = filter_layer(points)
# compute loss between 2D joint projection and OpenPose keypoints
if useConfWeights:
distance = points - keypoints
loss = distance * (keypoint_conf)
else:
loss = loss_layer(points, keypoints)
body_mean_loss = 0.0
if body_mean_loss:
body_mean_loss = (cur_pose -
body_mean_pose).pow(2).sum() * body_mean_weight
body_prior_loss = 0.0
if useBodyPrior:
# apply pose prior loss.
body_prior_loss = latent_body.pose_body.pow(
2).sum() * body_prior_weight
angle_prior_loss = 0.0
if useAnglePrior:
angle_prior_loss = torch.sum(
angle_prior_layer(cur_pose)) * angle_prior_weight
angle_prior_loss
angle_sum_loss = 0.0
if use_angle_sum_loss:
angle_sum_loss = clip_loss_layer(cur_pose) # * angle_sum_weight
loss = loss + body_mean_loss + body_prior_loss + angle_prior_loss + angle_sum_loss
return loss
def optim_closure():
if torch.is_grad_enabled():
optimizer.zero_grad()
loss = predict()
if loss.requires_grad:
loss.backward()
return loss
# store results for optional plotting
cur_patience = patience
best_loss = None
best_pose = None
loss_history = []
for t in range(iterations):
optimizer.step(optim_closure)
# LBFGS does not return the result, therefore we should rerun the model to get it
with torch.no_grad():
pred = predict()
loss = optim_closure()
# if t % 5 == 0:
# time.sleep(5)
# compute loss
cur_loss = loss.item()
loss_history.append(loss)
if best_loss is None:
best_loss = cur_loss
elif cur_loss < best_loss:
best_loss = cur_loss
best_pose = pose_layer.cur_out
else:
cur_patience = cur_patience - 1
if patience == 0:
print("[train] aborted due to patience limit reached")
pbar.set_description("Error %f" % cur_loss)
pbar.update(1)
if renderer is not None:
R = camera.trans.detach().cpu().numpy().squeeze()
renderer.render_model_with_tfs(
model, pose_layer.cur_out, keep_pose=True, transforms=R)
# renderer.set_group_pose("body", R)
pbar.close()
print("Final result:", loss.item())
return pose_layer.cur_out, best_pose
def train_pose_with_conf(
config,
camera: TorchCameraEstimate,
model: smplx.SMPL,
keypoints,
keypoint_conf,
device=torch.device('cpu'),
dtype=torch.float32,
renderer: Renderer = None,
):
# configure PyTorch device and format
# dtype = torch.float64
if 'device' in config['pose'] is not None:
device = torch.device(config['pose']['device'])
else:
device = torch.device('cpu')
# create camera module
pose_camera, cam_trans, cam_int, cam_params = SimpleCamera.from_estimation_cam(
cam=camera,
use_intrinsics=config['pose']['useCameraIntrinsics'],
dtype=dtype,
device=device,
)
# apply transform to scene
if renderer is not None:
renderer.set_group_pose("body", cam_trans.cpu().numpy())
return train_pose(
model=model.to(dtype=dtype),
keypoints=keypoints,
keypoint_conf=keypoint_conf,
camera=pose_camera,
device=device,
dtype=dtype,
renderer=renderer,
useAnglePrior=config['pose']['anglePrior']['enabled'],
useBodyPrior=config['pose']['bodyPrior']['enabled'],
useConfWeights=config['pose']['confWeights']['enabled'],
learning_rate=config['pose']['lr'],
optimizer_type=config['pose']['optimizer'],
iterations=config['pose']['iterations'],
body_prior_weight=config['pose']['bodyPrior']['weight'],
angle_prior_weight=config['pose']['anglePrior']['weight'],
body_mean_loss=config['pose']['bodyMeanLoss']['enabled'],
body_mean_weight=config['pose']['bodyMeanLoss']['weight'],
use_angle_sum_loss=config['pose']['angleSumLoss']['enabled'],
angle_sum_weight=config['pose']['angleSumLoss']['weight']
)