mirror of
https://github.com/gosticks/body-pose-animation.git
synced 2025-10-16 11:45:42 +00:00
142 lines
3.6 KiB
Python
142 lines
3.6 KiB
Python
|
|
|
|
from modules.camera import SimpleCamera
|
|
from modules.transform import Transform
|
|
from modules.pose import BodyPose, train_pose
|
|
from renderer import Renderer
|
|
import torch
|
|
import torchgeometry as tgm
|
|
from model import *
|
|
# from renderer import *
|
|
from dataset import *
|
|
from utils.mapping import *
|
|
from utils.general import *
|
|
|
|
ascii_logo = """\
|
|
/$$$$$$ /$$ /$$ /$$$$$$$ /$$ /$$ /$$
|
|
/$$__ $$| $$$ /$$$| $$__ $$| $$ | $$ /$$/
|
|
| $$ \__/| $$$$ /$$$$| $$ \ $$| $$ \ $$ /$$/
|
|
| $$$$$$ | $$ $$/$$ $$| $$$$$$$/| $$ \ $$$$/
|
|
\____ $$| $$ $$$| $$| $$____/ | $$ \ $$/
|
|
/$$ \ $$| $$\ $ | $$| $$ | $$ | $$
|
|
| $$$$$$/| $$ \/ | $$| $$ | $$$$$$$$| $$
|
|
\______/ |__/ |__/|__/ |________/|__/
|
|
|
|
"""
|
|
|
|
|
|
dtype = torch.float
|
|
# torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
|
device = torch.device('cpu')
|
|
|
|
print("using device", device)
|
|
|
|
print(ascii_logo)
|
|
conf = load_config()
|
|
print("config loaded")
|
|
dataset = SMPLyDataset()
|
|
|
|
|
|
# ------------------------------
|
|
# Load data
|
|
# ------------------------------
|
|
print("creating model")
|
|
l = SMPLyModel(conf['modelPath'])
|
|
model = l.create_model()
|
|
print("loading keypoints")
|
|
keypoints, conf = dataset[2]
|
|
print("keypoints shape:", keypoints.shape)
|
|
# ---------------------------------
|
|
# Generate model and get joints
|
|
# ---------------------------------
|
|
model_out = model()
|
|
joints = model_out.joints.detach().cpu().numpy().squeeze()
|
|
|
|
# ---------------------------------
|
|
# Draw in the joints of interest
|
|
# ---------------------------------
|
|
est_scale = estimate_scale(joints, keypoints)
|
|
|
|
# apply scaling to keypoints
|
|
keypoints = keypoints * est_scale
|
|
|
|
init_joints = get_torso(joints)
|
|
init_keypoints = get_torso(keypoints)
|
|
|
|
|
|
# setup renderer
|
|
r = Renderer()
|
|
r.render_model(model, model_out)
|
|
r.render_joints(joints)
|
|
r.render_keypoints(keypoints)
|
|
|
|
# render openpose torso markers
|
|
r.render_points(
|
|
init_keypoints,
|
|
radius=0.01,
|
|
color=[1.0, 0.0, 1.0, 1.0], name="ops_torso", group_name="keypoints")
|
|
|
|
r.render_points(
|
|
init_joints,
|
|
radius=0.01,
|
|
color=[0.0, 0.7, 0.0, 1.0], name="body_torso", group_name="body")
|
|
|
|
keypoints[:, 2] = 0
|
|
init_keypoints = get_torso(keypoints)
|
|
|
|
# start renderer
|
|
r.start()
|
|
|
|
# -------------------------------------
|
|
# Optimize for translation and rotation
|
|
# -------------------------------------
|
|
|
|
smpl_torso = torch.from_numpy(init_joints).float().to(device)
|
|
keyp_torso = torch.from_numpy(init_keypoints).float().to(device)
|
|
|
|
|
|
learning_rate = 1e-3
|
|
trans = Transform(dtype, device)
|
|
proj = SimpleCamera(dtype, device, 1)
|
|
optimizer = torch.optim.Adam(trans.parameters(), lr=learning_rate)
|
|
loss_layer = torch.nn.MSELoss()
|
|
|
|
for t in range(5000):
|
|
points_h = tgm.convert_points_to_homogeneous(smpl_torso)
|
|
points = trans(points_h)
|
|
points_2d = proj(points)
|
|
|
|
# point wise differences
|
|
diff = points_2d - keyp_torso
|
|
# Compute cost function
|
|
# loss = torch.norm(diff)
|
|
loss = loss_layer(keyp_torso, points_2d)
|
|
if t % 100 == 99:
|
|
print(t, loss.item())
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
with torch.no_grad():
|
|
R = trans.get_transform_mat(with_translate=True).numpy().squeeze()
|
|
# update model rendering
|
|
r.set_group_pose("body", R)
|
|
|
|
|
|
camera_transf = trans.get_transform_mat(with_translate=True).detach().cpu()
|
|
print("final pose:", camera_transf.numpy())
|
|
|
|
camera = SimpleCamera(dtype, device,
|
|
transform_mat=camera_transf)
|
|
|
|
train_pose(
|
|
model,
|
|
keypoints=keypoints,
|
|
keypoint_conf=conf,
|
|
# TODO: use camera_estimation camera here
|
|
camera=camera,
|
|
renderer=r,
|
|
device=torch.device("cuda")
|
|
)
|