body-pose-animation/modules/camera.py
2021-02-17 20:20:49 +01:00

104 lines
3.1 KiB
Python

from camera_estimation import TorchCameraEstimate
import torch
import torch.nn as nn
import torch.nn.functional as F
from math import cos, sin
from model import *
from dataset import *
class TransformCamera(nn.Module):
def __init__(
self,
transform_mat: torch.Tensor,
dtype=torch.float32,
device=None,
):
super(TransformCamera, self).__init__()
self.dtype = dtype
self.device = device
self.register_buffer("trans", transform_mat.to(
device=device, dtype=dtype))
def forward(self, points):
proj_points = self.trans @ points.reshape(-1, 4, 1)
proj_points = proj_points.reshape(1, -1, 4)[:, :, :2] * 1
proj_points = F.pad(proj_points, (0, 1, 0, 0), value=0)
return proj_points
class IntrinsicsCamera(nn.Module):
def __init__(
self,
transform_mat: torch.Tensor,
camera_intrinsics: torch.Tensor,
camera_trans_rot: torch.Tensor,
dtype=torch.float32,
device=None
):
super(IntrinsicsCamera, self).__init__()
self.dtype = dtype
self.device = device
self.register_buffer("cam_int", camera_intrinsics.to(
device=device, dtype=dtype))
self.register_buffer("cam_trans_rot", camera_trans_rot.to(
device=device, dtype=dtype))
self.register_buffer("trans", transform_mat.to(
device=device, dtype=dtype))
def forward(self, points):
proj_points = self.cam_int[:3, :3] @ self.cam_trans_rot[:3,
:] @ self.trans @ points.reshape(-1, 4, 1)
result = proj_points.squeeze(2)
denomiator = torch.zeros(
points.shape[1], 3, device=self.device, dtype=self.dtype)
for i in range(points.shape[1]):
denomiator[i, :] = result[i, 2]
result = result/denomiator
result[:, 2] = 0
return result
class SimpleCamera(nn.Module):
def dummy_camera(device=None, dtype=None):
cam_trans = torch.tensor(np.eye(4)).to(device=device, dtype=dtype)
cam_layer = TransformCamera(
transform_mat=cam_trans,
device=device,
dtype=dtype,
)
return cam_layer, cam_trans
def from_estimation_cam(cam: TorchCameraEstimate, use_intrinsics=False, device=None, dtype=None):
"""utility to create camera module from estimation camera
Args:
cam (TorchCameraEstimate): pre trained estimation camera
"""
cam_trans, cam_int, cam_params = cam.get_results(
device=device, dtype=dtype, visualize=True)
cam_layer = None
if use_intrinsics:
cam_layer = IntrinsicsCamera(
transform_mat=cam_trans,
camera_intrinsics=cam_int,
camera_trans_rot=cam_params,
device=device,
dtype=dtype,
)
else:
cam_layer = TransformCamera(
transform_mat=cam_trans,
device=device,
dtype=dtype,
)
return cam_layer, cam_trans, cam_int, cam_params