mirror of
https://github.com/gosticks/body-pose-animation.git
synced 2025-10-16 11:45:42 +00:00
234 lines
6.5 KiB
Python
234 lines
6.5 KiB
Python
from modules.distance_loss import WeightedMSELoss
|
|
from modules.utils import get_loss_layers
|
|
from camera_estimation import TorchCameraEstimate
|
|
import smplx
|
|
import torch
|
|
from tqdm import tqdm
|
|
import torchgeometry as tgm
|
|
|
|
# internal imports
|
|
from modules.pose import BodyPose
|
|
from modules.filter import JointFilter
|
|
from modules.camera import SimpleCamera
|
|
from renderer import Renderer
|
|
|
|
|
|
def train_pose(
|
|
model: smplx.SMPL,
|
|
# current datapoints
|
|
keypoints,
|
|
keypoint_conf,
|
|
# 3D to 2D camera layer
|
|
camera: SimpleCamera,
|
|
|
|
# model type
|
|
model_type="smplx",
|
|
|
|
# pytorch config
|
|
device=torch.device('cuda'),
|
|
dtype=torch.float32,
|
|
|
|
# optimizer settings
|
|
optimizer=None,
|
|
optimizer_type="LBFGS",
|
|
learning_rate=1e-3,
|
|
iterations=60,
|
|
patience=10,
|
|
|
|
# renderer options
|
|
renderer: Renderer = None,
|
|
render_steps=True,
|
|
|
|
extra_loss_layers=[],
|
|
|
|
use_progress_bar=True,
|
|
use_openpose_conf_loss=True,
|
|
loss_analysis=True
|
|
):
|
|
if use_progress_bar:
|
|
print("[pose] starting training")
|
|
print("[pose] dtype=", dtype, device)
|
|
|
|
offscreen_step_output = []
|
|
|
|
# is enabled will use openpose keypoint confidence
|
|
# as weights on the loss components
|
|
if use_openpose_conf_loss:
|
|
loss_layer = WeightedMSELoss(
|
|
weights=keypoint_conf,
|
|
device=device,
|
|
dtype=dtype
|
|
)
|
|
else:
|
|
loss_layer = torch.nn.MSELoss(reduction="sum").to(
|
|
device=device,
|
|
dtype=dtype
|
|
)
|
|
|
|
# make sure camera module is on the correct device
|
|
camera = camera.to(device=device, dtype=dtype)
|
|
|
|
# setup keypoint data
|
|
keypoints = torch.tensor(keypoints).to(device=device, dtype=dtype)
|
|
|
|
keypoint_filter = JointFilter(
|
|
model_type=model_type, filter_dims=3).to(device=device, dtype=dtype)
|
|
|
|
# filter keypoints
|
|
keypoints = keypoint_filter(keypoints)
|
|
|
|
# create filter layer to ignore unused joints, keypoints during optimization
|
|
filter_layer = JointFilter(
|
|
model_type=model_type, filter_dims=3).to(device=device, dtype=dtype)
|
|
|
|
# setup torch modules
|
|
pose_layer = BodyPose(model, dtype=dtype, device=device,
|
|
useBodyMeanAngles=False).to(device=device, dtype=dtype)
|
|
|
|
parameters = [pose_layer.body_pose]
|
|
|
|
# setup all loss layers
|
|
for l in extra_loss_layers:
|
|
# make sure layer is running on the correct device
|
|
l.to(device=device, dtype=dtype)
|
|
|
|
# register parameters if present
|
|
if l.has_parameters:
|
|
parameters = parameters + list(l.parameters())
|
|
|
|
if optimizer is None:
|
|
if optimizer_type.lower() == "lbfgs":
|
|
optimizer = torch.optim.LBFGS
|
|
elif optimizer_type.lower() == "adam":
|
|
optimizer = torch.optim.Adam
|
|
|
|
optimizer = optimizer(parameters, learning_rate)
|
|
|
|
if use_progress_bar:
|
|
pbar = tqdm(total=iterations)
|
|
|
|
# store results for optional plotting
|
|
cur_patience = patience
|
|
best_loss = None
|
|
best_output = None
|
|
|
|
# setup loss history data gathergin
|
|
loss_history = []
|
|
if loss_analysis:
|
|
loss_components = {"points": []}
|
|
for l in extra_loss_layers:
|
|
loss_components[l.__class__.__name__] = []
|
|
|
|
# prediction and loss computation closere
|
|
def predict():
|
|
# return joints based on current model state
|
|
body_joints, cur_pose = pose_layer()
|
|
|
|
# compute homogeneous coordinates and project them to 2D space
|
|
points = tgm.convert_points_to_homogeneous(body_joints)
|
|
points = camera(points).squeeze()
|
|
points = filter_layer(points)
|
|
|
|
# compute loss between 2D joint projection and OpenPose keypoints
|
|
loss = loss_layer(points, keypoints)
|
|
if loss_analysis:
|
|
loss_components['points'].append(loss.item())
|
|
# apply extra losses
|
|
for l in extra_loss_layers:
|
|
cur_loss = l(cur_pose, body_joints, points,
|
|
keypoints, pose_layer.cur_out)
|
|
if loss_analysis:
|
|
loss_components[l.__class__.__name__].append(cur_loss.item())
|
|
loss = loss + cur_loss
|
|
return loss
|
|
|
|
# main optimizer closure
|
|
def optim_closure():
|
|
if torch.is_grad_enabled():
|
|
optimizer.zero_grad()
|
|
|
|
loss = predict()
|
|
|
|
if loss.requires_grad:
|
|
loss.backward()
|
|
return loss
|
|
|
|
# camera translation
|
|
R = camera.trans.detach().cpu().numpy().squeeze()
|
|
|
|
# main optimization loop
|
|
for t in range(iterations):
|
|
loss = optimizer.step(optim_closure)
|
|
|
|
# compute loss
|
|
cur_loss = loss.item()
|
|
|
|
loss_history.append(loss)
|
|
|
|
if best_loss is None:
|
|
best_loss = cur_loss
|
|
elif cur_loss < best_loss:
|
|
best_loss = cur_loss
|
|
best_output = pose_layer.cur_out
|
|
else:
|
|
cur_patience = cur_patience - 1
|
|
|
|
if patience == 0:
|
|
print("[train] aborted due to patience limit reached")
|
|
|
|
if use_progress_bar:
|
|
pbar.set_description("Error %f" % cur_loss)
|
|
pbar.update(1)
|
|
|
|
if renderer is not None and render_steps:
|
|
renderer.render_model(
|
|
model=model,
|
|
model_out=pose_layer.cur_out,
|
|
transform=R
|
|
)
|
|
if renderer.use_offscreen:
|
|
offscreen_step_output.append(renderer.get_snapshot())
|
|
|
|
if use_progress_bar:
|
|
pbar.close()
|
|
print("Final result:", loss.item())
|
|
return best_output, loss_history, offscreen_step_output, loss_components
|
|
|
|
|
|
def train_pose_with_conf(
|
|
config,
|
|
pose_camera,
|
|
model: smplx.SMPL,
|
|
keypoints,
|
|
keypoint_conf,
|
|
device=torch.device('cpu'),
|
|
dtype=torch.float32,
|
|
renderer: Renderer = None,
|
|
render_steps=True,
|
|
use_progress_bar=True,
|
|
print_loss_layers=False
|
|
):
|
|
loss_layers = get_loss_layers(config, model, device, dtype)
|
|
|
|
if print_loss_layers:
|
|
print(loss_layers)
|
|
|
|
best_output, loss_history, offscreen_step_output, loss_components = train_pose(
|
|
model=model.to(dtype=dtype),
|
|
keypoints=keypoints,
|
|
keypoint_conf=keypoint_conf,
|
|
camera=pose_camera,
|
|
device=device,
|
|
dtype=dtype,
|
|
renderer=renderer,
|
|
optimizer_type=config['pose']['optimizer'],
|
|
iterations=config['pose']['iterations'],
|
|
learning_rate=config['pose']['lr'],
|
|
render_steps=render_steps,
|
|
use_openpose_conf_loss=config['pose']['useOpenPoseConf'],
|
|
use_progress_bar=use_progress_bar,
|
|
extra_loss_layers=loss_layers
|
|
)
|
|
|
|
return best_output, loss_history, offscreen_step_output, loss_components
|