body-pose-animation/train.py
2021-02-23 21:40:55 +01:00

191 lines
6.0 KiB
Python

# library imports
from collections import defaultdict
import numpy as np
from modules.camera import SimpleCamera
from train_orient import train_orient_with_conf
from modules.utils import is_loss_enabled, toggle_loss_enabled
import os
import pickle
import cv2
import torch
from tqdm.auto import trange
# local imports
from train_pose import train_pose_with_conf
from model import SMPLyModel
from utils.general import getfilename_from_conf, setup_training
from utils.video import interpolate_poses
from camera_estimation import TorchCameraEstimate
def optimize_sample(sample_index, dataset, config, device=torch.device('cpu'), dtype=torch.float32, interactive=True, offscreen=False, verbose=True, initial_pose=None, initial_orient=None):
# prepare data and SMPL model
model = SMPLyModel.model_from_conf(config)
init_keypoints, init_joints, keypoints, conf, est_scale, r, img_path = setup_training(
model=model,
renderer=(interactive or offscreen),
dataset=dataset,
sample_index=sample_index,
offscreen=offscreen
)
camera = TorchCameraEstimate(
model,
keypoints=keypoints,
renderer=r,
device=device,
dtype=dtype,
image_path=img_path,
est_scale=est_scale,
verbose=verbose,
use_progress_bar=verbose
)
if not offscreen and interactive:
# render camera to the scene
camera.setup_visualization(r.init_keypoints, r.keypoints)
# change loss requires for at least one pass to have completed
# we disabled this loss if enabled at all for the first pass
change_loss_disabled = False
if is_loss_enabled(config, 'changeLoss') and initial_pose is None:
change_loss_disabled = True
toggle_loss_enabled(config, 'changeLoss', False)
# configure PyTorch device and format
# dtype = torch.float64
if 'device' in config['pose'] is not None:
device = torch.device(config['pose']['device'])
else:
device = torch.device('cpu')
# get camera estimation
pose_camera, cam_trans, cam_int, cam_params = SimpleCamera.from_estimation_cam(
cam=camera,
use_intrinsics=config['pose']['useCameraIntrinsics'],
dtype=dtype,
device=device,
)
params = defaultdict(
body_pose=initial_pose,
global_orient=initial_orient
)
with torch.no_grad():
model(**params)
# apply transform to scene
if r is not None:
r.set_group_pose("body", cam_trans.cpu().numpy())
global_orient = train_orient_with_conf(
config=config,
model=model,
keypoints=keypoints,
camera_layer=pose_camera,
renderer=r,
device=device,
use_progress_bar=verbose,
render_steps=(offscreen or interactive)
)
# FIXME: there seems to some form of projection issue and hence the orientation is missestimating the angle
# with torch.no_grad():
# .to(device=device, dtype=dtype)
# model.global_orient[0][1] = -model.global_orient[0][1]
# train for pose
best_out, loss_history, step_imgs, loss_components = train_pose_with_conf(
config=config,
model=model,
keypoints=keypoints,
keypoint_conf=conf,
pose_camera=pose_camera,
renderer=r,
device=device,
use_progress_bar=verbose,
render_steps=(offscreen or interactive)
)
# make sure change loss is enabled for the next sample
if change_loss_disabled:
toggle_loss_enabled(config, 'changeLoss', True)
# if display_result and interactive:
# r.wait_for_close()
return best_out, cam_trans, loss_history, step_imgs, loss_components
def create_animation(dataset, config, start_idx=0, end_idx=None, offscreen=False, verbose=False, save_to_file=False, interpolate=False):
model_outs = []
use_temporal_data = config['pose']['temporal']['enabled']
if end_idx is None:
end_idx = len(dataset) - 1
initial_pose = None
initial_orient = None
for idx in trange(end_idx - start_idx, desc='Optimizing'):
idx = start_idx + idx
if use_temporal_data and initial_pose is not None:
config['pose']['lr'] = config['pose']['temporal']['lr']
config['pose']['iterations'] = config['pose']['temporal']['iterations']
best_out, cam_trans, train_loss, step_imgs, loss_components = optimize_sample(
idx,
dataset,
config,
verbose=verbose,
offscreen=offscreen,
interactive=verbose,
initial_pose=initial_pose,
initial_orient=initial_orient)
if verbose:
print("Optimization of", idx, "frames finished")
# print("\nPose optimization of frame", idx, "is finished.")
R = cam_trans.cpu().numpy().squeeze()
idx += 1
if best_out is None:
print("[error] optimizer produced no pose. Skipping frame:", idx)
continue
# append optimized pose and camera transformation to the array
model_outs.append((best_out, R))
if use_temporal_data:
initial_pose = best_out.body_pose.detach().clone().cpu() # .to(device=device)
initial_orient = best_out.global_orient.detach().clone().cpu()
if interpolate:
model_outs = interpolate_poses(model_outs)
file_path = None
if save_to_file:
'''
Save final_poses array into results folder as a pickle dump
'''
results_dir = config['output']['rootDir']
result_prefix = config['output']['prefix']
pkl_name = getfilename_from_conf(config)
pkl_name = pkl_name + "-" + str(start_idx)
if end_idx is not None:
pkl_name = pkl_name + "-" + str(end_idx)
pkl_name = pkl_name + ".pkl"
file_path = os.path.join(results_dir, pkl_name)
print("Saving results to", file_path)
with open(file_path, "wb") as fp:
pickle.dump(model_outs, fp)
print("Results have been saved to", file_path)
return model_outs, file_path