body-pose-animation/train_orient.py
2021-02-23 21:40:55 +01:00

180 lines
4.7 KiB
Python

from utils.mapping import get_indices_by_name
from modules.distance_loss import WeightedMSELoss
from modules.utils import get_loss_layers
from camera_estimation import TorchCameraEstimate
import smplx
import torch
import torch.nn as nn
from tqdm import tqdm
import torchgeometry as tgm
# internal imports
from modules.pose import BodyPose
from modules.filter import JointFilter
from modules.camera import SimpleCamera
from renderer import Renderer
def train_orient(
model: smplx.SMPL,
# current datapoints
keypoints,
# 3D to 2D camera layer
camera: SimpleCamera,
# pytorch config
device=torch.device('cuda'),
dtype=torch.float32,
# optimizer settings
optimizer=None,
optimizer_type="Adam",
learning_rate=1e-3,
iterations=60,
patience=10,
joint_names=["hip-left", "hip-right",
"shoulder-left", "shoulder-right"],
# renderer options
renderer: Renderer = None,
render_steps=True,
use_progress_bar=True,
):
if use_progress_bar:
print("[pose] starting training")
print("[pose] dtype=", dtype, device)
loss_layer = torch.nn.MSELoss(reduction="sum").to(
device=device,
dtype=dtype
)
# make sure camera module is on the correct device
camera = camera.to(device=device, dtype=dtype)
# setup keypoint data
keypoints = torch.tensor(keypoints).to(device=device, dtype=dtype)
# torso indices
torso_indices = get_indices_by_name(joint_names)
torso_indices = torch.tensor(
torso_indices, dtype=torch.int64, device=device).reshape(4)
# setup torch modules
pose_layer = BodyPose(model, dtype=dtype, device=device,
useBodyMeanAngles=False).to(device=device, dtype=dtype)
parameters = [model.global_orient]
if use_progress_bar:
pbar = tqdm(total=iterations)
# store results for optional plotting
cur_patience = patience
best_loss = None
best_output = None
if optimizer is None:
if optimizer_type.lower() == "lbfgs":
optimizer = torch.optim.LBFGS
elif optimizer_type.lower() == "adam":
optimizer = torch.optim.Adam
optimizer = optimizer(parameters, learning_rate)
# prediction and loss computation closere
def predict():
# return joints based on current model state
body_joints, cur_pose = pose_layer()
# compute homogeneous coordinates and project them to 2D space
points = tgm.convert_points_to_homogeneous(body_joints)
points = camera(points).squeeze()
# compute loss between 2D joint projection and OpenPose keypoints
loss = loss_layer(points[torso_indices],
keypoints[torso_indices])
return loss
# main optimizer closure
def optim_closure():
if torch.is_grad_enabled():
optimizer.zero_grad()
loss = predict()
if loss.requires_grad:
loss.backward()
return loss
# camera translation
R = camera.trans.detach().cpu().numpy().squeeze()
# main optimization loop
for t in range(iterations):
loss = optimizer.step(optim_closure)
# compute loss
cur_loss = loss.item()
if best_loss is None:
best_loss = cur_loss
elif cur_loss < best_loss:
best_loss = cur_loss
best_output = pose_layer.cur_out
else:
cur_patience = cur_patience - 1
if patience == 0:
print("[train] aborted due to patience limit reached")
if use_progress_bar:
pbar.set_description("Error %f" % cur_loss)
pbar.update(1)
if renderer is not None and render_steps:
renderer.render_model(
model=model,
model_out=pose_layer.cur_out,
transform=R
)
if use_progress_bar:
pbar.close()
print("Final result:", loss.item())
return best_output
def train_orient_with_conf(
config,
camera_layer: TorchCameraEstimate,
model: smplx.SMPL,
keypoints,
device=torch.device('cpu'),
dtype=torch.float32,
renderer: Renderer = None,
render_steps=True,
use_progress_bar=True,
):
best_output = train_orient(
model=model.to(dtype=dtype),
keypoints=keypoints,
camera=camera_layer,
device=device,
dtype=dtype,
renderer=renderer,
joint_names=config['orientation']['joint_names'],
optimizer_type=config['orientation']['optimizer'],
iterations=config['orientation']['iterations'],
learning_rate=config['orientation']['lr'],
render_steps=render_steps,
use_progress_bar=use_progress_bar,
)
return best_output.global_orient.detach().clone().cpu()