body-pose-animation/example_camera.py

158 lines
4.2 KiB
Python

from modules.camera import SimpleCamera
from modules.transform import Transform
from modules.pose import BodyPose
from renderer import Renderer
import torch
import torchgeometry as tgm
from model import *
# from renderer import *
from dataset import *
from utils.mapping import *
from utils.general import *
ascii_logo = """\
/$$$$$$ /$$ /$$ /$$$$$$$ /$$ /$$ /$$
/$$__ $$| $$$ /$$$| $$__ $$| $$ | $$ /$$/
| $$ \__/| $$$$ /$$$$| $$ \ $$| $$ \ $$ /$$/
| $$$$$$ | $$ $$/$$ $$| $$$$$$$/| $$ \ $$$$/
\____ $$| $$ $$$| $$| $$____/ | $$ \ $$/
/$$ \ $$| $$\ $ | $$| $$ | $$ | $$
| $$$$$$/| $$ \/ | $$| $$ | $$$$$$$$| $$
\______/ |__/ |__/|__/ |________/|__/
"""
dtype = torch.float
# torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
device = torch.device('cpu')
print(ascii_logo)
conf = load_config()
print("config loaded")
dataset = SMPLyDataset()
# ------------------------------
# Load data
# ------------------------------
l = SMPLyModel(conf['modelPath'])
model = l.create_model()
keypoints, conf = dataset[0]
print("keypoints shape:", keypoints.shape)
# ---------------------------------
# Generate model and get joints
# ---------------------------------
model_out = model()
joints = model_out.joints.detach().cpu().numpy().squeeze()
# ---------------------------------
# Draw in the joints of interest
# ---------------------------------
cam_est_joints_names = ["hip-left", "hip-right",
"shoulder-left", "shoulder-right"]
est_scale = estimate_scale(joints, keypoints)
# apply scaling to keypoints
keypoints = keypoints * est_scale
init_joints = get_named_joints(joints, cam_est_joints_names)
init_keypoints = get_named_joints(keypoints, cam_est_joints_names)
# setup renderer
r = Renderer()
r.render_model(model, model_out)
r.render_joints(joints)
r.render_keypoints(keypoints)
# render openpose torso markers
r.render_points(
init_keypoints,
radius=0.01,
color=[1.0, 0.0, 1.0, 1.0], name="ops_torso", group_name="keypoints")
r.render_points(
init_joints,
radius=0.01,
color=[0.0, 0.7, 0.0, 1.0], name="body_torso", group_name="body")
keypoints[:, 2] = 0
init_keypoints = get_named_joints(keypoints, cam_est_joints_names)
# start renderer
r.start()
# -------------------------------------
# Optimize for translation and rotation
# -------------------------------------
smpl_torso = torch.Tensor(init_joints, device=device)
keyp_torso = torch.Tensor(init_keypoints, device=device)
learning_rate = 1e-3
trans = Transform(dtype, device)
proj = SimpleCamera(dtype, device, 1)
optimizer = torch.optim.Adam(trans.parameters(), lr=learning_rate)
loss_layer = torch.nn.MSELoss()
for t in range(5000):
points_h = tgm.convert_points_to_homogeneous(smpl_torso)
points = trans(points_h)
points_2d = proj(points)
# point wise differences
diff = points_2d - keyp_torso
# Compute cost function
# loss = torch.norm(diff)
loss = loss_layer(keyp_torso, points_2d)
if t % 100 == 99:
print(t, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
R = trans.get_transform_mat(with_translate=True).numpy().squeeze()
# update model rendering
r.set_group_pose("body", R)
camera_transf = trans.get_transform_mat(with_translate=True).detach().cpu()
pose_layer = BodyPose(model, dtype=dtype, device=device)
camera = SimpleCamera(dtype, device, z_scale=1,
transform_mat=camera_transf)
op_kp = torch.Tensor(keypoints, device=device)
print(keypoints.shape)
pose_loss_layer = torch.nn.MSELoss()
pose_opt = torch.optim.Adam(pose_layer.parameters(), lr=1e-4)
print("starting training for pose...")
for t in range(2000):
joints = pose_layer()
points_h = tgm.convert_points_to_homogeneous(joints)
points_2d = camera(points_h)
# point wise differences
diff = points_2d - op_kp
loss = pose_loss_layer(op_kp, points_2d)
if t % 100 == 99:
print(t, loss.item())
pose_opt.zero_grad()
loss.backward()
pose_opt.step()
if t % 10 == 9:
with torch.no_grad():
# update model rendering
r.render_model(model, pose_layer.cur_out)