body-pose-animation/camera_estimation.py
2021-02-08 15:33:27 +01:00

330 lines
11 KiB
Python

# Initial camera estimation based on the torso keypoints obtained from OpenPose.
from utils.general import get_torso
from dataset import *
from model import *
from scipy.spatial.transform import Rotation as R
from scipy.optimize import minimize
import time
from renderer import *
import torchgeometry as tgm
from torchgeometry.core.conversions import rtvec_to_pose
import cv2
from tqdm import tqdm
import torch.nn.functional as F
class CameraEstimate:
def __init__(
self,
model: smplx.SMPL,
keypoints,
renderer,
image_path=None,
dtype=torch.float32,
device=torch.device("cpu"),
verbose=True,
use_progress_bar=True,
est_scale=1):
self.use_progress_bar = use_progress_bar
self.verbose = verbose
self.model = model
self.output_model = model(return_verts=True)
self.renderer = renderer
self.dtype = dtype
self.device = device
self.image_path = image_path
self.keypoints = keypoints
self.scale = torch.tensor([est_scale, est_scale, est_scale],
requires_grad=False, dtype=self.dtype, device=self.device)
def get_torso_keypoints(self):
smpl_keypoints = self.output_model.joints.detach().cpu().numpy().squeeze()
torso_keypoints_3d = get_torso(smpl_keypoints).reshape(4, 3)
torso_keypoints_2d = get_torso(self.keypoints).reshape(4, 3)
return torso_keypoints_2d, torso_keypoints_3d
def visualize_mesh(self, keypoints, smpl_points):
if self.renderer is None:
return
# hardcoded scaling factor
# scaling_factor = 1
# smpl_points /= scaling_factor
# color_3d = [0.1, 0.9, 0.1, 1.0]
# self.transformed_points = self.renderer.render_points(
# smpl_points, color=color_3d, name="smpl_torso", group_name="body")
# color_2d = [0.9, 0.1, 0.1, 1.0]
# self.renderer.render_keypoints(keypoints, color=color_2d)
# model_color = [0.3, 0.3, 0.3, 0.8]
# self.renderer.render_model(
# self.model, self.output_model, model_color)
camera_color = [0.0, 0.0, 0.1, 1.0]
self.camera_renderer = self.renderer.render_camera(color=camera_color)
# if self.image_path is not None:
# self.renderer.render_image_from_path(self.image_path)
self.renderer.start()
def setup_visualization(self, render_points, render_keypoints):
self.transformed_points = render_points
def sum_of_squares(self, params, X, Y):
y_pred = self.loss_model(params, X)
loss = np.sum((y_pred - Y) ** 2)
return loss
def iteration_callback(self, params):
time.sleep(0.1)
#input("Press a key for next iteration...")
current_pose = self.params_to_pose(params)
# TODO: use renderer.py methods
if self.renderer is not None:
self.renderer.scene.set_group_pose("body", current_pose)
# self.renderer.scene.set_pose(self.verts, current_pose)
def params_to_pose(self, params):
pose = np.eye(4)
pose[:3, :3] = R.from_euler(
'xyz', [params[3], params[4], params[5]], degrees=False).as_matrix()
pose[:3, 3] = params[:3]
return pose
def estimate_camera_pos(self):
translation = np.zeros(3)
rotation = np.random.rand(3) * 2 * np.pi
params = np.concatenate((translation, rotation))
# print(params)
init_points_2d, init_points_3d = self.get_torso_keypoints()
self.visualize_mesh(init_points_2d, init_points_3d)
res = minimize(self.sum_of_squares, x0=params, args=(init_points_3d, init_points_2d),
callback=self.iteration_callback, tol=1e-4, method="BFGS")
# print(res)
transform_matrix = self.params_to_pose(res.x)
return transform_matrix
class TorchCameraEstimate(CameraEstimate):
def estimate_camera_pos(self, visualize=True):
self.memory = None
translation = torch.zeros(
1, 3, requires_grad=True, dtype=self.dtype, device=self.device)
rotation = torch.rand(1, 3, requires_grad=True,
dtype=self.dtype, device=self.device)
rotation.float()
translation.float()
init_points_2d, init_points_3d = self.get_torso_keypoints()
if visualize:
self.visualize_mesh(init_points_2d, init_points_3d)
init_points_2d = torch.from_numpy(init_points_2d).to(
device=self.device, dtype=self.dtype)
init_points_3d = torch.from_numpy(init_points_3d).to(
device=self.device, dtype=self.dtype)
init_points_3d_prepared = torch.ones(4, 4, 1).to(
device=self.device, dtype=self.dtype)
init_points_3d_prepared[:, :3, :] = init_points_3d.unsqueeze(
0).transpose(0, 1).transpose(1, 2)
params = [translation, rotation]
opt = torch.optim.Adam(params, lr=0.1)
loss_layer = torch.nn.MSELoss()
stop = True
tol = 3e-4
if self.verbose:
print("Estimating Initial transform...")
if self.use_progress_bar:
pbar = tqdm(total=100)
current = 0
while stop:
y_pred = self.C(params, init_points_3d_prepared)
loss = loss_layer(init_points_2d, y_pred)
with torch.no_grad():
opt.zero_grad()
loss.backward()
opt.step()
current_pose = self.torch_params_to_pose(params)
current_pose = current_pose.detach().numpy()
if self.renderer is not None:
self.renderer.set_group_pose("body", current_pose)
per = int((tol/loss*100).item())
if self.use_progress_bar:
if per > 100:
pbar.update(abs(100 - current))
current = 100
else:
pbar.update(per - current)
current = per
stop = loss > tol
if stop == True:
stop = self.patience_module(loss, 5)
if self.use_progress_bar:
pbar.update(abs(100 - current))
pbar.close()
self.memory = None
transform_matrix = self.torch_params_to_pose(params)
current_pose = transform_matrix.detach().numpy()
camera_translation = torch.tensor(
[[0.5, 0.5, 5.0]], requires_grad=True, dtype=self.dtype, device=self.device)
# camera_translation[0,2] = 5 * torch.ones(1)
camera_rotation = torch.tensor(
[[0, 0, 0]], requires_grad=False, dtype=self.dtype, device=self.device)
camera_intrinsics = torch.zeros(
4, 4, dtype=self.dtype, device=self.device)
camera_intrinsics[0, 0] = 5
camera_intrinsics[1, 1] = 5
camera_intrinsics[2, 2] = 1
camera_intrinsics[0, 2] = 0.5
camera_intrinsics[1, 2] = 0.5
camera_intrinsics[3, 3] = 1
params = [camera_translation, camera_rotation, camera_intrinsics]
camera_extrinsics = self.torch_params_to_pose(params)
# camera = tgm.PinholeCamera(camera_intrinsics.unsqueeze(0), camera_extrinsics.unsqueeze(0), torch.ones(1), torch.ones(1))
init_points_3d_prepared = transform_matrix @ init_points_3d_prepared
# result = self.transform_3d_to_2d(params, transform_matrix @ init_points_3d_prepared)
opt2 = torch.optim.Adam(params, lr=0.1)
stop = True
first = True
cam_tol = 6e-3
# print("Estimating Camera transformations...")
if self.use_progress_bar:
pbar = tqdm(total=100)
current = 0
while stop:
y_pred = self.transform_3d_to_2d(
params, init_points_3d_prepared)
loss = torch.nn.SmoothL1Loss()(init_points_2d.float(), y_pred.float())
loss.requres_grad = True
opt2.zero_grad()
if first:
loss.backward(retain_graph=True)
else:
loss.backward()
opt2.step()
if visualize and self.renderer is not None:
self.renderer.scene.set_pose(
self.camera_renderer, self.torch_params_to_pose(params).detach().numpy())
per = int((cam_tol/loss*100).item())
if self.use_progress_bar:
if per > 100:
pbar.update(100 - current)
else:
pbar.update(per - current)
current = per
stop = loss > cam_tol
if stop == True:
stop = self.patience_module(loss, 5)
if self.use_progress_bar:
pbar.update(100 - current)
pbar.close()
camera_transform_matrix = self.torch_params_to_pose(
params)
return camera_intrinsics, transform_matrix, camera_transform_matrix
def transform_3d_to_2d(self, params, X):
camera_ext = rtvec_to_pose(
torch.cat((params[1], params[0])).view(-1).unsqueeze(0)).squeeze(0)
camera_int = params[2]
result = camera_int[:3, :3] @ camera_ext[:3, :] @ X
result = result.squeeze(2)
denomiator = torch.zeros(4, 3)
denomiator[0, :] = result[0, 2]
denomiator[1, :] = result[1, 2]
denomiator[2, :] = result[2, 2]
denomiator[3, :] = result[3, 2]
result = result/denomiator
result[:, 2] = 0
return result
def torch_params_to_pose(self, params):
transform = rtvec_to_pose(
torch.cat((params[1], params[0])).view(-1).unsqueeze(0))
for i in range(3):
transform[0, i, i] *= self.scale[i]
return transform[0, :, :]
def C(self, params, X):
Ext_mat = rtvec_to_pose(
torch.cat((params[1], params[0])).view(-1).unsqueeze(0))
for i in range(3):
Ext_mat[0, i, i] *= self.scale[i]
y_pred = Ext_mat @ X
y_pred = y_pred.squeeze(2)
y_pred = y_pred[:, :3]
return y_pred
def loss_model(self, params, points):
translation = params[:3]
rotation = R.from_euler(
'xyz', [params[3], params[4], params[5]], degrees=False)
y_pred = points @ rotation.as_matrix() + translation
return y_pred
def patience_module(self, variable, counter: int):
if self.memory is None:
self.memory = torch.clone(variable)
self.patience_count = 0
return True
if self.patience_count >= counter:
self.memory is None
self.patience_count = 0
return False
else:
if torch.isclose(variable, self.memory).item():
self.patience_count += 1
return True
else:
self.patience_count = 0
self.memory = torch.clone(variable)
return True
def get_results(self, device=None, dtype=None):
if device is None:
device = self.device
if dtype is None:
dtype = self.dtype
pose, transform, cam_trans = self.estimate_camera_pos()
camera_transformation = transform.clone().detach().to(
device=device, dtype=dtype)
camera_int = pose.clone().detach().to(device=device, dtype=dtype)
camera_params = cam_trans.clone().detach().to(device=device, dtype=dtype)
return camera_transformation, camera_int, camera_params