body-pose-animation/train.py
2021-02-08 15:33:27 +01:00

102 lines
2.9 KiB
Python

# library imports
import pickle
import torch
from utils.video import make_video
from tqdm.auto import trange
# local imports
from train_pose import train_pose_with_conf
from model import SMPLyModel
from utils.general import get_new_filename, setup_training
from camera_estimation import TorchCameraEstimate
def optimize_sample(sample_index, dataset, config, device=torch.device('cpu'), dtype=torch.float32, offscreen=False, verbose=False, display_result=False):
# prepare data and SMPL model
model = SMPLyModel.model_from_conf(config)
init_keypoints, init_joints, keypoints, conf, est_scale, r, img_path = setup_training(
model=model,
renderer=True,
dataset=dataset,
sample_index=sample_index,
offscreen=offscreen
)
camera = TorchCameraEstimate(
model,
keypoints=keypoints,
renderer=r,
device=device,
dtype=dtype,
image_path=img_path,
est_scale=est_scale,
verbose=verbose,
use_progress_bar=verbose
)
camera_transformation, camera_int, camera_params = camera.get_results()
if not offscreen:
# render camera to the scene
camera.setup_visualization(r.init_keypoints, r.keypoints)
# train for pose
pose, loss_history, step_imgs = train_pose_with_conf(
config=config,
model=model,
keypoints=keypoints,
keypoint_conf=conf,
camera=camera,
renderer=r,
device=device,
use_progress_bar=verbose
)
if display_result:
r.wait_for_close()
return pose, camera_transformation, loss_history, step_imgs
def create_animation(dataset, config, start_idx=0, end_idx=None, device=torch.device('cpu'), dtype=torch.float32, offscreen=False, verbose=False, save_to_file=False):
final_poses = []
if end_idx is None:
end_idx = len(dataset)
for idx in trange(end_idx - start_idx, desc='Optimizing'):
idx = start_idx + idx
final_pose, cam_trans, train_loss, step_imgs = optimize_sample(
idx,
dataset,
config,
offscreen=True
)
if verbose:
print("Optimization of", idx, "frames finished")
# print("\nPose optimization of frame", idx, "is finished.")
R = cam_trans.numpy().squeeze()
idx += 1
# append optimized pose and camera transformation to the array
final_poses.append((final_pose, R))
filename = None
if save_to_file:
'''
Save final_poses array into results folder as a pickle dump
'''
results_dir = config['output']['rootDir']
result_prefix = config['output']['prefix']
filename = results_dir + get_new_filename()
print("Saving results to", filename)
with open(filename, "wb") as fp:
pickle.dump(final_poses, fp)
print("Results have been saved to", filename)
return final_poses, filename