mirror of
https://github.com/gosticks/body-pose-animation.git
synced 2025-10-16 11:45:42 +00:00
206 lines
5.7 KiB
Python
206 lines
5.7 KiB
Python
from modules.angle import AnglePriorsLoss
|
|
import smplx
|
|
import torch
|
|
from tqdm import tqdm
|
|
import torchgeometry as tgm
|
|
|
|
# internal imports
|
|
from modules.pose import BodyPose
|
|
from modules.filter import JointFilter
|
|
from model import VPoserModel
|
|
from modules.camera import SimpleCamera
|
|
from renderer import Renderer
|
|
|
|
|
|
def train_pose(
|
|
model: smplx.SMPL,
|
|
keypoints,
|
|
keypoint_conf,
|
|
camera: SimpleCamera,
|
|
model_type="smplx",
|
|
learning_rate=1e-3,
|
|
device=torch.device('cuda'),
|
|
dtype=torch.float32,
|
|
renderer: Renderer = None,
|
|
optimizer=None,
|
|
optimizer_type="LBFGS",
|
|
iterations=60,
|
|
useBodyPrior=True,
|
|
useAnglePrior=True,
|
|
useConfWeights=True,
|
|
patience=10,
|
|
body_prior_weight=2,
|
|
angle_prior_weight=0.5,
|
|
body_mean_loss=False,
|
|
body_mean_weight=0.01
|
|
):
|
|
|
|
print("[pose] starting training")
|
|
print("[pose] ")
|
|
|
|
loss_layer = torch.nn.MSELoss()
|
|
|
|
# setup keypoint data
|
|
keypoints = torch.tensor(keypoints).to(device=device, dtype=dtype)
|
|
# get a list of openpose conf values
|
|
keypoints_conf = torch.tensor(keypoint_conf).to(device)
|
|
|
|
# create filter layer to ignore unused joints, keypoints during optimization
|
|
filter_layer = JointFilter(model_type=model_type, filter_dims=3)
|
|
|
|
# setup torch modules
|
|
pose_layer = BodyPose(model, dtype=dtype, device=device,
|
|
useBodyMeanAngles=useBodyPrior).to(device)
|
|
|
|
parameters = [pose_layer.body_pose]
|
|
|
|
# loss layers
|
|
if useBodyPrior:
|
|
vposer = VPoserModel()
|
|
vposer_layer = vposer.model
|
|
vposer_params = vposer.get_vposer_latent()
|
|
# parameters.append(vposer_params)
|
|
|
|
if useAnglePrior:
|
|
angle_prior_layer = AnglePriorsLoss(dtype=dtype, device=device)
|
|
|
|
if optimizer is None:
|
|
if optimizer_type.lower() == "lbfgs":
|
|
optimizer = torch.optim.LBFGS
|
|
elif optimizer_type.lower() == "adam":
|
|
optimizer = torch.optim.Adam
|
|
|
|
optimizer = optimizer(parameters, learning_rate)
|
|
|
|
pbar = tqdm(total=iterations)
|
|
|
|
def predict():
|
|
pose_extra = None
|
|
|
|
if useBodyPrior:
|
|
body = vposer_layer()
|
|
poZ = body.poZ_body
|
|
pose_extra = body.pose_body
|
|
|
|
# return joints based on current model state
|
|
body_joints = pose_layer(pose_extra)
|
|
|
|
# compute homogeneous coordinates and project them to 2D space
|
|
points = tgm.convert_points_to_homogeneous(body_joints)
|
|
points = camera(points).squeeze()
|
|
|
|
# filter out unused joints
|
|
points = filter_layer(points)
|
|
|
|
# compute loss between 2D joint projection and OpenPose keypoints
|
|
|
|
if useConfWeights:
|
|
distance = points - keypoints
|
|
loss = distance * (keypoint_conf)
|
|
else:
|
|
loss = loss_layer(points, keypoints)
|
|
|
|
if body_mean_loss:
|
|
# apply pose prior loss.
|
|
# poZ.pow(2).sum() * body_prior_weight
|
|
loss = loss + (pose_layer.body_pose -
|
|
pose_extra).pow(2).sum() * body_mean_weight
|
|
|
|
if useBodyPrior:
|
|
# apply pose prior loss.
|
|
loss = loss + poZ.pow(2).sum() * body_prior_weight
|
|
|
|
if useAnglePrior:
|
|
loss = loss + \
|
|
angle_prior_layer(pose_layer.body_pose) * angle_prior_weight
|
|
|
|
return loss
|
|
|
|
def optim_closure():
|
|
if torch.is_grad_enabled():
|
|
optimizer.zero_grad()
|
|
|
|
loss = predict()
|
|
|
|
if loss.requires_grad:
|
|
loss.backward()
|
|
return loss
|
|
|
|
# store results for optional plotting
|
|
cur_patience = patience
|
|
best_loss = None
|
|
best_pose = None
|
|
|
|
loss_history = []
|
|
|
|
for t in range(iterations):
|
|
optimizer.step(optim_closure)
|
|
|
|
# LBFGS does not return the result, therefore we should rerun the model to get it
|
|
with torch.no_grad():
|
|
pred = predict()
|
|
loss = optim_closure()
|
|
|
|
# if t % 5 == 0:
|
|
# time.sleep(5)
|
|
|
|
# compute loss
|
|
cur_loss = loss.item()
|
|
|
|
loss_history.append(loss)
|
|
|
|
if best_loss is None:
|
|
best_loss = cur_loss
|
|
elif cur_loss < best_loss:
|
|
best_loss = cur_loss
|
|
best_pose = pose_layer.cur_out
|
|
else:
|
|
cur_patience = cur_patience - 1
|
|
|
|
if patience == 0:
|
|
print("[train] aborted due to patience limit reached")
|
|
|
|
pbar.set_description("Error %f" % cur_loss)
|
|
pbar.update(1)
|
|
|
|
if renderer is not None:
|
|
R = camera.trans.numpy().squeeze()
|
|
renderer.render_model_with_tfs(
|
|
model, pose_layer.cur_out, keep_pose=True, transforms=R)
|
|
# renderer.set_group_pose("body", R)
|
|
|
|
pbar.close()
|
|
print("Final result:", loss.item())
|
|
return pose_layer.cur_out
|
|
|
|
|
|
def train_pose_with_conf(
|
|
config,
|
|
model: smplx.SMPL,
|
|
keypoints,
|
|
keypoint_conf,
|
|
camera: SimpleCamera,
|
|
device=torch.device('cpu'),
|
|
dtype=torch.float32,
|
|
renderer: Renderer = None,
|
|
):
|
|
return train_pose(
|
|
model=model,
|
|
keypoints=keypoints,
|
|
keypoint_conf=keypoint_conf,
|
|
camera=camera,
|
|
device=device,
|
|
dtype=dtype,
|
|
renderer=renderer,
|
|
useAnglePrior=config['pose']['anglePrior']['enabled'],
|
|
useBodyPrior=config['pose']['bodyPrior']['enabled'],
|
|
useConfWeights=config['pose']['confWeights']['enabled'],
|
|
learning_rate=config['pose']['lr'],
|
|
optimizer_type=config['pose']['optimizer'],
|
|
iterations=config['pose']['iterations'],
|
|
body_prior_weight=config['pose']['bodyPrior']['weight'],
|
|
angle_prior_weight=config['pose']['anglePrior']['weight'],
|
|
body_mean_loss=config['pose']['bodyMeanLoss']['enabled'],
|
|
body_mean_weight=config['pose']['bodyMeanLoss']['weight']
|
|
)
|