body-pose-animation/example_camera.py
2021-02-01 23:53:36 +01:00

142 lines
3.6 KiB
Python

from modules.camera import SimpleCamera
from modules.transform import Transform
from modules.pose import BodyPose, train_pose
from renderer import Renderer
import torch
import torchgeometry as tgm
from model import *
# from renderer import *
from dataset import *
from utils.mapping import *
from utils.general import *
ascii_logo = """\
/$$$$$$ /$$ /$$ /$$$$$$$ /$$ /$$ /$$
/$$__ $$| $$$ /$$$| $$__ $$| $$ | $$ /$$/
| $$ \__/| $$$$ /$$$$| $$ \ $$| $$ \ $$ /$$/
| $$$$$$ | $$ $$/$$ $$| $$$$$$$/| $$ \ $$$$/
\____ $$| $$ $$$| $$| $$____/ | $$ \ $$/
/$$ \ $$| $$\ $ | $$| $$ | $$ | $$
| $$$$$$/| $$ \/ | $$| $$ | $$$$$$$$| $$
\______/ |__/ |__/|__/ |________/|__/
"""
dtype = torch.float
# torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
device = torch.device('cpu')
print("using device", device)
print(ascii_logo)
conf = load_config()
print("config loaded")
dataset = SMPLyDataset()
# ------------------------------
# Load data
# ------------------------------
print("creating model")
l = SMPLyModel(conf['modelPath'])
model = l.create_model()
print("loading keypoints")
keypoints, conf = dataset[2]
print("keypoints shape:", keypoints.shape)
# ---------------------------------
# Generate model and get joints
# ---------------------------------
model_out = model()
joints = model_out.joints.detach().cpu().numpy().squeeze()
# ---------------------------------
# Draw in the joints of interest
# ---------------------------------
est_scale = estimate_scale(joints, keypoints)
# apply scaling to keypoints
keypoints = keypoints * est_scale
init_joints = get_torso(joints)
init_keypoints = get_torso(keypoints)
# setup renderer
r = Renderer()
r.render_model(model, model_out)
r.render_joints(joints)
r.render_keypoints(keypoints)
# render openpose torso markers
r.render_points(
init_keypoints,
radius=0.01,
color=[1.0, 0.0, 1.0, 1.0], name="ops_torso", group_name="keypoints")
r.render_points(
init_joints,
radius=0.01,
color=[0.0, 0.7, 0.0, 1.0], name="body_torso", group_name="body")
keypoints[:, 2] = 0
init_keypoints = get_torso(keypoints)
# start renderer
r.start()
# -------------------------------------
# Optimize for translation and rotation
# -------------------------------------
smpl_torso = torch.from_numpy(init_joints).float().to(device)
keyp_torso = torch.from_numpy(init_keypoints).float().to(device)
learning_rate = 1e-3
trans = Transform(dtype, device)
proj = SimpleCamera(dtype, device, 1)
optimizer = torch.optim.Adam(trans.parameters(), lr=learning_rate)
loss_layer = torch.nn.MSELoss()
for t in range(5000):
points_h = tgm.convert_points_to_homogeneous(smpl_torso)
points = trans(points_h)
points_2d = proj(points)
# point wise differences
diff = points_2d - keyp_torso
# Compute cost function
# loss = torch.norm(diff)
loss = loss_layer(keyp_torso, points_2d)
if t % 100 == 99:
print(t, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
R = trans.get_transform_mat(with_translate=True).numpy().squeeze()
# update model rendering
r.set_group_pose("body", R)
camera_transf = trans.get_transform_mat(with_translate=True).detach().cpu()
print("final pose:", camera_transf.numpy())
camera = SimpleCamera(dtype, device,
transform_mat=camera_transf)
train_pose(
model,
keypoints=keypoints,
keypoint_conf=conf,
# TODO: use camera_estimation camera here
camera=camera,
renderer=r,
device=torch.device("cuda")
)