body-pose-animation/example_fit_anim.py
2021-02-03 14:46:33 +01:00

157 lines
4.7 KiB
Python

from dataset import SMPLyDataset
from model import *
from utils.general import *
from renderer import *
import torch
from camera_estimation import TorchCameraEstimate
from modules.camera import SimpleCamera
from modules.pose import train_pose
import pickle
import time
from utils.general import rename_files, get_new_filename
START_IDX = 150 # starting index of the frame to optimize for
FINISH_IDX = 200 # choose a big number to optimize for all frames in samples directory
RUN_OPTIMIZATION = True
final_poses = [] # optimized poses array that is saved for playing the animation
idx = START_IDX
def get_next_frame(idx):
"""
Get keypoints and image_path of the frame given index.
:param idx: index of the frame
:return: tuple of keypoints, conf and image path
"""
keypoints = dataset[idx]
if keypoints is None:
return
image_path = dataset.get_image_path(idx)
return keypoints[0], keypoints[1], image_path
device = torch.device('cpu')
dtype = torch.float
dataset = SMPLyDataset()
conf = load_config()
model = SMPLyModel(conf['modelPath']).create_model()
# Rename files in samples directory to uniform format
samples_dir = conf['inputPath']
rename_files(samples_dir + "/")
results_dir = conf['resultsPath']
result_prefix = conf['resultPrefix']
model_out = model()
joints = model_out.joints.detach().cpu().numpy().squeeze()
'''
Optimization part without visualization
'''
if RUN_OPTIMIZATION:
while get_next_frame(idx) is not None and idx <= FINISH_IDX:
keypoints, confidence, img_path = get_next_frame(idx)
est_scale = estimate_scale(joints, keypoints)
# apply scaling to keypoints
keypoints = keypoints * est_scale
init_joints = get_torso(joints)
init_keypoints = get_torso(keypoints)
camera = TorchCameraEstimate(
model,
dataset=dataset,
keypoints=keypoints,
renderer=None,
device=torch.device('cpu'),
dtype=torch.float32,
image_path=img_path,
est_scale=est_scale
)
pose, transform, cam_trans = camera.estimate_camera_pos()
print("\nCamera optimization of frame", idx, "is finished.")
camera_transformation = transform.clone().detach().to(device=device, dtype=dtype)
camera_int = pose.clone().detach().to(device=device, dtype=dtype)
camera_params = cam_trans.clone().detach().to(device=device, dtype=dtype)
camera = SimpleCamera(dtype, device,
transform_mat=camera_transformation,
# camera_intrinsics=camera_int, camera_trans_rot=camera_params
)
final_pose = train_pose(
model,
learning_rate=1e-2,
keypoints=keypoints,
keypoint_conf=confidence,
# TODO: use camera_estimation camera here
camera=camera,
renderer=None,
device=device,
iterations=10
)
print("\nPose optimization of frame", idx, "is finished.")
R = camera.trans.numpy().squeeze()
idx += 1
# append optimized pose and camera transformation to the array
final_poses.append((final_pose, R))
print("Optimization of", idx, "frames finished")
'''
Save final_poses array into results folder as a pickle dump
'''
filename = results_dir + get_new_filename()
print("Saving results to", filename)
with open(filename, "wb") as fp:
pickle.dump(final_poses, fp)
print("Results have been saved to", filename)
# TODO: put into utils, rename file,
def replay_animation(file, start_frame=0, end_frame=None, with_background=False, fps=30):
r = Renderer()
r.start()
model_anim = SMPLyModel(conf['modelPath']).create_model()
with open(file, "rb") as fp:
final_poses = pickle.load(fp)
if end_frame is None:
end_frame = len(final_poses)
print(len(final_poses))
for i in range(start_frame, end_frame):
body_pose = final_poses[i][0]
camera_transform = final_poses[i][1]
# Changing image is too jerky, because the image has to be removed and added each time
if with_background:
pass
# img_path = samples_dir + "/" + str(i) + ".png"
# if r.get_node("image") is not None:
# r.remove_node("image")
# r.render_image_from_path(img_path, name="image", scale=est_scale)
r.render_model_with_tfs(model_anim, body_pose, keep_pose=True, render_joints=False, transforms=camera_transform)
time.sleep(1 / fps)
'''
Play the animation.
'''
anim_file = results_dir + result_prefix + "0.pkl"
if RUN_OPTIMIZATION:
anim_file = filename
replay_animation(anim_file)