body-pose-animation/camera_estimation.py

166 lines
5.8 KiB
Python

# Initial camera estimation based on the torso keypoints obtained from OpenPose.
from numpy.core.fromnumeric import transpose
import yaml
from dataset import *
from model import *
from scipy.spatial.transform import Rotation as R
from scipy.optimize import minimize
import time
from utils import *
from renderer import *
import torchgeometry as tgm
dtype = torch.float64
def load_config():
with open('./config.yaml') as file:
# The FullLoader parameter handles the conversion from YAML
# scalar values to Python the dictionary format
config = yaml.load(file, Loader=yaml.FullLoader)
return config
class CameraEstimate:
def __init__(self, model: smplx.SMPLX, dataset, renderer):
self.model = model
self.dataset = dataset
self.output_model = model(return_verts=True)
self.renderer = renderer
self.toggle = False
def get_torso_keypoints(self):
keypoints = self.dataset[0]
cam_est_joints_names = ["hip-left", "hip-right",
"shoulder-left", "shoulder-right"]
smpl_keypoints = self.output_model.joints.detach().cpu().numpy().squeeze()
torso_keypoints_3d = np.array(get_named_joints(smpl_keypoints, cam_est_joints_names))
torso_keypoints_2d = np.array(get_named_joints(keypoints[0], cam_est_joints_names))
return np.reshape(torso_keypoints_2d, (4, 3)), np.reshape(torso_keypoints_3d, (4, 3))
def visualize_mesh(self, keypoints, smpl_points):
# hardcoded scaling factor
scaling_factor = 1
smpl_points /= scaling_factor
color_3d = [0.1, 0.9, 0.1, 1.0]
self.transformed_points = self.renderer.render_points(smpl_points, color=color_3d)
color_2d = [0.9, 0.1, 0.1, 1.0]
self.renderer.render_keypoints(keypoints, color=color_2d)
model_color = [0.3, 0.3, 0.3, 0.8]
self.verts = self.renderer.render_model(self.model, self.output_model, model_color)
self.renderer.start()
def loss_model(self, params, points):
translation = params[:3]
rotation = R.from_euler('xyz', [params[3], params[4], params[5]], degrees=False)
y_pred = points @ rotation.as_matrix() + translation
return y_pred
def sum_of_squares(self, params, X, Y):
y_pred = self.loss_model(params, X)
loss = np.sum((y_pred - Y) ** 2)
return loss
def iteration_callback(self, params):
time.sleep(0.1)
#input("Press a key for next iteration...")
current_pose = self.params_to_pose(params)
# TODO: use renderer.py methods
self.renderer.scene.set_pose(self.transformed_points, current_pose)
self.renderer.scene.set_pose(self.verts, current_pose)
def params_to_pose(self, params):
pose = np.eye(4)
pose[:3, :3] = R.from_euler('xyz', [params[3], params[4], params[5]], degrees=False).as_matrix()
pose[:3, 3] = params[:3]
return pose
def torch_params_to_pose(self, params):
rotation = tgm.angle_axis_to_rotation_matrix(params[1])
rotation[:,:3, 3] = params[0]
return rotation[0,:,:]
def estimate_camera_pos(self):
if self.toggle:
translation = np.zeros(3)
rotation = np.random.rand(3) * 2 * np.pi
params = np.concatenate((translation, rotation))
print(params)
init_points_2d, init_points_3d = self.get_torso_keypoints()
self.visualize_mesh(init_points_2d, init_points_3d)
res = minimize(self.sum_of_squares, x0=params, args=(init_points_3d, init_points_2d),
callback=self.iteration_callback, tol=1e-4, method="BFGS")
print(res)
transform_matrix = self.params_to_pose(res.x)
return transform_matrix
else:
translation = torch.zeros(3, requires_grad = True)
rotation = torch.rand(1, 3, requires_grad = True)
rotation.float()
translation.float()
init_points_2d, init_points_3d = self.get_torso_keypoints()
self.visualize_mesh(init_points_2d, init_points_3d)
init_points_2d = torch.from_numpy(init_points_2d)
init_points_3d = torch.from_numpy(init_points_3d)
params = [translation, rotation]
opt = torch.optim.Adam(params, lr=0.1)
def C(params, X):
translation = params[0]
rotation = tgm.angle_axis_to_rotation_matrix(params[1])
# y_pred = X @ rotation[:,:3,:3] + translation
y_pred = torch.zeros(4,3)
y_pred[0,:] = rotation[0,:3,:3] @ X[0,:] + translation
y_pred[1,:] = rotation[0,:3,:3] @ X[1,:] + translation
y_pred[2,:] = rotation[0,:3,:3] @ X[2,:] + translation
y_pred[3,:] = rotation[0,:3,:3] @ X[3,:] + translation
return y_pred
stop = True
while stop:
y_pred = C(params, init_points_3d)
loss = torch.nn.MSELoss()(init_points_2d.float(), y_pred.float() )
loss.requres_grad = True
opt.zero_grad()
loss.float()
loss.backward()
opt.step()
stop = loss > 3e-4
current_pose = self.torch_params_to_pose(params)
current_pose = current_pose.detach().numpy()
self.renderer.scene.set_pose(self.transformed_points, current_pose)
self.renderer.scene.set_pose(self.verts, current_pose)
transform_matrix = self.torch_params_to_pose(params)
return transform_matrix
conf = load_config()
dataset = SMPLyDataset()
model = SMPLyModel(conf['modelPath']).create_model()
camera = CameraEstimate(model, dataset, Renderer())
pose = camera.estimate_camera_pos()
print("Pose matrix: \n", pose)