iota.flash.js-java-wrapper/src/main/resources/iota.flash.js
2018-01-20 16:11:52 +01:00

10583 lines
303 KiB
JavaScript

"use strict";
(function webpackUniversalModuleDefinition(root, factory) {
if(typeof exports === 'object' && typeof module === 'object')
module.exports = factory();
else if(typeof define === 'function' && define.amd)
define("iotaFlash", [], factory);
else if(typeof exports === 'object')
exports["iotaFlash"] = factory();
else
root["iotaFlash"] = factory();
})(typeof self !== 'undefined' ? self : this, function() {
return /******/ (function(modules) { // webpackBootstrap
/******/ // The module cache
/******/ var installedModules = {};
/******/
/******/ // The require function
/******/ function __webpack_require__(moduleId) {
/******/
/******/ // Check if module is in cache
/******/ if(installedModules[moduleId]) {
/******/ return installedModules[moduleId].exports;
/******/ }
/******/ // Create a new module (and put it into the cache)
/******/ var module = installedModules[moduleId] = {
/******/ i: moduleId,
/******/ l: false,
/******/ exports: {}
/******/ };
/******/
/******/ // Execute the module function
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
/******/
/******/ // Flag the module as loaded
/******/ module.l = true;
/******/
/******/ // Return the exports of the module
/******/ return module.exports;
/******/ }
/******/
/******/
/******/ // expose the modules object (__webpack_modules__)
/******/ __webpack_require__.m = modules;
/******/
/******/ // expose the module cache
/******/ __webpack_require__.c = installedModules;
/******/
/******/ // define getter function for harmony exports
/******/ __webpack_require__.d = function(exports, name, getter) {
/******/ if(!__webpack_require__.o(exports, name)) {
/******/ Object.defineProperty(exports, name, {
/******/ configurable: false,
/******/ enumerable: true,
/******/ get: getter
/******/ });
/******/ }
/******/ };
/******/
/******/ // getDefaultExport function for compatibility with non-harmony modules
/******/ __webpack_require__.n = function(module) {
/******/ var getter = module && module.__esModule ?
/******/ function getDefault() { return module['default']; } :
/******/ function getModuleExports() { return module; };
/******/ __webpack_require__.d(getter, 'a', getter);
/******/ return getter;
/******/ };
/******/
/******/ // Object.prototype.hasOwnProperty.call
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
/******/
/******/ // __webpack_public_path__
/******/ __webpack_require__.p = "";
/******/
/******/ // Load entry module and return exports
/******/ return __webpack_require__(__webpack_require__.s = 25);
/******/ })
/************************************************************************/
/******/ ([
/* 0 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory) {
if (true) {
// CommonJS
module.exports = exports = factory();
}
else if (typeof define === "function" && define.amd) {
// AMD
define([], factory);
}
else {
// Global (browser)
root.CryptoJS = factory();
}
}(this, function () {
/**
* CryptoJS core components.
*/
var CryptoJS = CryptoJS || (function (Math, undefined) {
/*
* Local polyfil of Object.create
*/
var create = Object.create || (function () {
function F() {};
return function (obj) {
var subtype;
F.prototype = obj;
subtype = new F();
F.prototype = null;
return subtype;
};
}())
/**
* CryptoJS namespace.
*/
var C = {};
/**
* Library namespace.
*/
var C_lib = C.lib = {};
/**
* Base object for prototypal inheritance.
*/
var Base = C_lib.Base = (function () {
return {
/**
* Creates a new object that inherits from this object.
*
* @param {Object} overrides Properties to copy into the new object.
*
* @return {Object} The new object.
*
* @static
*
* @example
*
* var MyType = CryptoJS.lib.Base.extend({
* field: 'value',
*
* method: function () {
* }
* });
*/
extend: function (overrides) {
// Spawn
var subtype = create(this);
// Augment
if (overrides) {
subtype.mixIn(overrides);
}
// Create default initializer
if (!subtype.hasOwnProperty('init') || this.init === subtype.init) {
subtype.init = function () {
subtype.$super.init.apply(this, arguments);
};
}
// Initializer's prototype is the subtype object
subtype.init.prototype = subtype;
// Reference supertype
subtype.$super = this;
return subtype;
},
/**
* Extends this object and runs the init method.
* Arguments to create() will be passed to init().
*
* @return {Object} The new object.
*
* @static
*
* @example
*
* var instance = MyType.create();
*/
create: function () {
var instance = this.extend();
instance.init.apply(instance, arguments);
return instance;
},
/**
* Initializes a newly created object.
* Override this method to add some logic when your objects are created.
*
* @example
*
* var MyType = CryptoJS.lib.Base.extend({
* init: function () {
* // ...
* }
* });
*/
init: function () {
},
/**
* Copies properties into this object.
*
* @param {Object} properties The properties to mix in.
*
* @example
*
* MyType.mixIn({
* field: 'value'
* });
*/
mixIn: function (properties) {
for (var propertyName in properties) {
if (properties.hasOwnProperty(propertyName)) {
this[propertyName] = properties[propertyName];
}
}
// IE won't copy toString using the loop above
if (properties.hasOwnProperty('toString')) {
this.toString = properties.toString;
}
},
/**
* Creates a copy of this object.
*
* @return {Object} The clone.
*
* @example
*
* var clone = instance.clone();
*/
clone: function () {
return this.init.prototype.extend(this);
}
};
}());
/**
* An array of 32-bit words.
*
* @property {Array} words The array of 32-bit words.
* @property {number} sigBytes The number of significant bytes in this word array.
*/
var WordArray = C_lib.WordArray = Base.extend({
/**
* Initializes a newly created word array.
*
* @param {Array} words (Optional) An array of 32-bit words.
* @param {number} sigBytes (Optional) The number of significant bytes in the words.
*
* @example
*
* var wordArray = CryptoJS.lib.WordArray.create();
* var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
* var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
*/
init: function (words, sigBytes) {
words = this.words = words || [];
if (sigBytes != undefined) {
this.sigBytes = sigBytes;
} else {
this.sigBytes = words.length * 4;
}
},
/**
* Converts this word array to a string.
*
* @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
*
* @return {string} The stringified word array.
*
* @example
*
* var string = wordArray + '';
* var string = wordArray.toString();
* var string = wordArray.toString(CryptoJS.enc.Utf8);
*/
toString: function (encoder) {
return (encoder || Hex).stringify(this);
},
/**
* Concatenates a word array to this word array.
*
* @param {WordArray} wordArray The word array to append.
*
* @return {WordArray} This word array.
*
* @example
*
* wordArray1.concat(wordArray2);
*/
concat: function (wordArray) {
// Shortcuts
var thisWords = this.words;
var thatWords = wordArray.words;
var thisSigBytes = this.sigBytes;
var thatSigBytes = wordArray.sigBytes;
// Clamp excess bits
this.clamp();
// Concat
if (thisSigBytes % 4) {
// Copy one byte at a time
for (var i = 0; i < thatSigBytes; i++) {
var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
}
} else {
// Copy one word at a time
for (var i = 0; i < thatSigBytes; i += 4) {
thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2];
}
}
this.sigBytes += thatSigBytes;
// Chainable
return this;
},
/**
* Removes insignificant bits.
*
* @example
*
* wordArray.clamp();
*/
clamp: function () {
// Shortcuts
var words = this.words;
var sigBytes = this.sigBytes;
// Clamp
words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
words.length = Math.ceil(sigBytes / 4);
},
/**
* Creates a copy of this word array.
*
* @return {WordArray} The clone.
*
* @example
*
* var clone = wordArray.clone();
*/
clone: function () {
var clone = Base.clone.call(this);
clone.words = this.words.slice(0);
return clone;
},
/**
* Creates a word array filled with random bytes.
*
* @param {number} nBytes The number of random bytes to generate.
*
* @return {WordArray} The random word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.lib.WordArray.random(16);
*/
random: function (nBytes) {
var words = [];
var r = (function (m_w) {
var m_w = m_w;
var m_z = 0x3ade68b1;
var mask = 0xffffffff;
return function () {
m_z = (0x9069 * (m_z & 0xFFFF) + (m_z >> 0x10)) & mask;
m_w = (0x4650 * (m_w & 0xFFFF) + (m_w >> 0x10)) & mask;
var result = ((m_z << 0x10) + m_w) & mask;
result /= 0x100000000;
result += 0.5;
return result * (Math.random() > .5 ? 1 : -1);
}
});
for (var i = 0, rcache; i < nBytes; i += 4) {
var _r = r((rcache || Math.random()) * 0x100000000);
rcache = _r() * 0x3ade67b7;
words.push((_r() * 0x100000000) | 0);
}
return new WordArray.init(words, nBytes);
}
});
/**
* Encoder namespace.
*/
var C_enc = C.enc = {};
/**
* Hex encoding strategy.
*/
var Hex = C_enc.Hex = {
/**
* Converts a word array to a hex string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The hex string.
*
* @static
*
* @example
*
* var hexString = CryptoJS.enc.Hex.stringify(wordArray);
*/
stringify: function (wordArray) {
// Shortcuts
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
// Convert
var hexChars = [];
for (var i = 0; i < sigBytes; i++) {
var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
hexChars.push((bite >>> 4).toString(16));
hexChars.push((bite & 0x0f).toString(16));
}
return hexChars.join('');
},
/**
* Converts a hex string to a word array.
*
* @param {string} hexStr The hex string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Hex.parse(hexString);
*/
parse: function (hexStr) {
// Shortcut
var hexStrLength = hexStr.length;
// Convert
var words = [];
for (var i = 0; i < hexStrLength; i += 2) {
words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
}
return new WordArray.init(words, hexStrLength / 2);
}
};
/**
* Latin1 encoding strategy.
*/
var Latin1 = C_enc.Latin1 = {
/**
* Converts a word array to a Latin1 string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The Latin1 string.
*
* @static
*
* @example
*
* var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
*/
stringify: function (wordArray) {
// Shortcuts
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
// Convert
var latin1Chars = [];
for (var i = 0; i < sigBytes; i++) {
var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
latin1Chars.push(String.fromCharCode(bite));
}
return latin1Chars.join('');
},
/**
* Converts a Latin1 string to a word array.
*
* @param {string} latin1Str The Latin1 string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
*/
parse: function (latin1Str) {
// Shortcut
var latin1StrLength = latin1Str.length;
// Convert
var words = [];
for (var i = 0; i < latin1StrLength; i++) {
words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
}
return new WordArray.init(words, latin1StrLength);
}
};
/**
* UTF-8 encoding strategy.
*/
var Utf8 = C_enc.Utf8 = {
/**
* Converts a word array to a UTF-8 string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The UTF-8 string.
*
* @static
*
* @example
*
* var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
*/
stringify: function (wordArray) {
try {
return decodeURIComponent(escape(Latin1.stringify(wordArray)));
} catch (e) {
throw new Error('Malformed UTF-8 data');
}
},
/**
* Converts a UTF-8 string to a word array.
*
* @param {string} utf8Str The UTF-8 string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
*/
parse: function (utf8Str) {
return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
}
};
/**
* Abstract buffered block algorithm template.
*
* The property blockSize must be implemented in a concrete subtype.
*
* @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
*/
var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({
/**
* Resets this block algorithm's data buffer to its initial state.
*
* @example
*
* bufferedBlockAlgorithm.reset();
*/
reset: function () {
// Initial values
this._data = new WordArray.init();
this._nDataBytes = 0;
},
/**
* Adds new data to this block algorithm's buffer.
*
* @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
*
* @example
*
* bufferedBlockAlgorithm._append('data');
* bufferedBlockAlgorithm._append(wordArray);
*/
_append: function (data) {
// Convert string to WordArray, else assume WordArray already
if (typeof data == 'string') {
data = Utf8.parse(data);
}
// Append
this._data.concat(data);
this._nDataBytes += data.sigBytes;
},
/**
* Processes available data blocks.
*
* This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
*
* @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
*
* @return {WordArray} The processed data.
*
* @example
*
* var processedData = bufferedBlockAlgorithm._process();
* var processedData = bufferedBlockAlgorithm._process(!!'flush');
*/
_process: function (doFlush) {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var dataSigBytes = data.sigBytes;
var blockSize = this.blockSize;
var blockSizeBytes = blockSize * 4;
// Count blocks ready
var nBlocksReady = dataSigBytes / blockSizeBytes;
if (doFlush) {
// Round up to include partial blocks
nBlocksReady = Math.ceil(nBlocksReady);
} else {
// Round down to include only full blocks,
// less the number of blocks that must remain in the buffer
nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0);
}
// Count words ready
var nWordsReady = nBlocksReady * blockSize;
// Count bytes ready
var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes);
// Process blocks
if (nWordsReady) {
for (var offset = 0; offset < nWordsReady; offset += blockSize) {
// Perform concrete-algorithm logic
this._doProcessBlock(dataWords, offset);
}
// Remove processed words
var processedWords = dataWords.splice(0, nWordsReady);
data.sigBytes -= nBytesReady;
}
// Return processed words
return new WordArray.init(processedWords, nBytesReady);
},
/**
* Creates a copy of this object.
*
* @return {Object} The clone.
*
* @example
*
* var clone = bufferedBlockAlgorithm.clone();
*/
clone: function () {
var clone = Base.clone.call(this);
clone._data = this._data.clone();
return clone;
},
_minBufferSize: 0
});
/**
* Abstract hasher template.
*
* @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
*/
var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({
/**
* Configuration options.
*/
cfg: Base.extend(),
/**
* Initializes a newly created hasher.
*
* @param {Object} cfg (Optional) The configuration options to use for this hash computation.
*
* @example
*
* var hasher = CryptoJS.algo.SHA256.create();
*/
init: function (cfg) {
// Apply config defaults
this.cfg = this.cfg.extend(cfg);
// Set initial values
this.reset();
},
/**
* Resets this hasher to its initial state.
*
* @example
*
* hasher.reset();
*/
reset: function () {
// Reset data buffer
BufferedBlockAlgorithm.reset.call(this);
// Perform concrete-hasher logic
this._doReset();
},
/**
* Updates this hasher with a message.
*
* @param {WordArray|string} messageUpdate The message to append.
*
* @return {Hasher} This hasher.
*
* @example
*
* hasher.update('message');
* hasher.update(wordArray);
*/
update: function (messageUpdate) {
// Append
this._append(messageUpdate);
// Update the hash
this._process();
// Chainable
return this;
},
/**
* Finalizes the hash computation.
* Note that the finalize operation is effectively a destructive, read-once operation.
*
* @param {WordArray|string} messageUpdate (Optional) A final message update.
*
* @return {WordArray} The hash.
*
* @example
*
* var hash = hasher.finalize();
* var hash = hasher.finalize('message');
* var hash = hasher.finalize(wordArray);
*/
finalize: function (messageUpdate) {
// Final message update
if (messageUpdate) {
this._append(messageUpdate);
}
// Perform concrete-hasher logic
var hash = this._doFinalize();
return hash;
},
blockSize: 512/32,
/**
* Creates a shortcut function to a hasher's object interface.
*
* @param {Hasher} hasher The hasher to create a helper for.
*
* @return {Function} The shortcut function.
*
* @static
*
* @example
*
* var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
*/
_createHelper: function (hasher) {
return function (message, cfg) {
return new hasher.init(cfg).finalize(message);
};
},
/**
* Creates a shortcut function to the HMAC's object interface.
*
* @param {Hasher} hasher The hasher to use in this HMAC helper.
*
* @return {Function} The shortcut function.
*
* @static
*
* @example
*
* var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
*/
_createHmacHelper: function (hasher) {
return function (message, key) {
return new C_algo.HMAC.init(hasher, key).finalize(message);
};
}
});
/**
* Algorithm namespace.
*/
var C_algo = C.algo = {};
return C;
}(Math));
return CryptoJS;
}));
/***/ }),
/* 1 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(4));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./evpkdf"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/**
* Cipher core components.
*/
CryptoJS.lib.Cipher || (function (undefined) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var Base = C_lib.Base;
var WordArray = C_lib.WordArray;
var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
var C_enc = C.enc;
var Utf8 = C_enc.Utf8;
var Base64 = C_enc.Base64;
var C_algo = C.algo;
var EvpKDF = C_algo.EvpKDF;
/**
* Abstract base cipher template.
*
* @property {number} keySize This cipher's key size. Default: 4 (128 bits)
* @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
* @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
* @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
*/
var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({
/**
* Configuration options.
*
* @property {WordArray} iv The IV to use for this operation.
*/
cfg: Base.extend(),
/**
* Creates this cipher in encryption mode.
*
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {Cipher} A cipher instance.
*
* @static
*
* @example
*
* var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
*/
createEncryptor: function (key, cfg) {
return this.create(this._ENC_XFORM_MODE, key, cfg);
},
/**
* Creates this cipher in decryption mode.
*
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {Cipher} A cipher instance.
*
* @static
*
* @example
*
* var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
*/
createDecryptor: function (key, cfg) {
return this.create(this._DEC_XFORM_MODE, key, cfg);
},
/**
* Initializes a newly created cipher.
*
* @param {number} xformMode Either the encryption or decryption transormation mode constant.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @example
*
* var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
*/
init: function (xformMode, key, cfg) {
// Apply config defaults
this.cfg = this.cfg.extend(cfg);
// Store transform mode and key
this._xformMode = xformMode;
this._key = key;
// Set initial values
this.reset();
},
/**
* Resets this cipher to its initial state.
*
* @example
*
* cipher.reset();
*/
reset: function () {
// Reset data buffer
BufferedBlockAlgorithm.reset.call(this);
// Perform concrete-cipher logic
this._doReset();
},
/**
* Adds data to be encrypted or decrypted.
*
* @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
*
* @return {WordArray} The data after processing.
*
* @example
*
* var encrypted = cipher.process('data');
* var encrypted = cipher.process(wordArray);
*/
process: function (dataUpdate) {
// Append
this._append(dataUpdate);
// Process available blocks
return this._process();
},
/**
* Finalizes the encryption or decryption process.
* Note that the finalize operation is effectively a destructive, read-once operation.
*
* @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
*
* @return {WordArray} The data after final processing.
*
* @example
*
* var encrypted = cipher.finalize();
* var encrypted = cipher.finalize('data');
* var encrypted = cipher.finalize(wordArray);
*/
finalize: function (dataUpdate) {
// Final data update
if (dataUpdate) {
this._append(dataUpdate);
}
// Perform concrete-cipher logic
var finalProcessedData = this._doFinalize();
return finalProcessedData;
},
keySize: 128/32,
ivSize: 128/32,
_ENC_XFORM_MODE: 1,
_DEC_XFORM_MODE: 2,
/**
* Creates shortcut functions to a cipher's object interface.
*
* @param {Cipher} cipher The cipher to create a helper for.
*
* @return {Object} An object with encrypt and decrypt shortcut functions.
*
* @static
*
* @example
*
* var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
*/
_createHelper: (function () {
function selectCipherStrategy(key) {
if (typeof key == 'string') {
return PasswordBasedCipher;
} else {
return SerializableCipher;
}
}
return function (cipher) {
return {
encrypt: function (message, key, cfg) {
return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
},
decrypt: function (ciphertext, key, cfg) {
return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
}
};
};
}())
});
/**
* Abstract base stream cipher template.
*
* @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
*/
var StreamCipher = C_lib.StreamCipher = Cipher.extend({
_doFinalize: function () {
// Process partial blocks
var finalProcessedBlocks = this._process(!!'flush');
return finalProcessedBlocks;
},
blockSize: 1
});
/**
* Mode namespace.
*/
var C_mode = C.mode = {};
/**
* Abstract base block cipher mode template.
*/
var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({
/**
* Creates this mode for encryption.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @static
*
* @example
*
* var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
*/
createEncryptor: function (cipher, iv) {
return this.Encryptor.create(cipher, iv);
},
/**
* Creates this mode for decryption.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @static
*
* @example
*
* var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
*/
createDecryptor: function (cipher, iv) {
return this.Decryptor.create(cipher, iv);
},
/**
* Initializes a newly created mode.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @example
*
* var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
*/
init: function (cipher, iv) {
this._cipher = cipher;
this._iv = iv;
}
});
/**
* Cipher Block Chaining mode.
*/
var CBC = C_mode.CBC = (function () {
/**
* Abstract base CBC mode.
*/
var CBC = BlockCipherMode.extend();
/**
* CBC encryptor.
*/
CBC.Encryptor = CBC.extend({
/**
* Processes the data block at offset.
*
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
*
* @example
*
* mode.processBlock(data.words, offset);
*/
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher;
var blockSize = cipher.blockSize;
// XOR and encrypt
xorBlock.call(this, words, offset, blockSize);
cipher.encryptBlock(words, offset);
// Remember this block to use with next block
this._prevBlock = words.slice(offset, offset + blockSize);
}
});
/**
* CBC decryptor.
*/
CBC.Decryptor = CBC.extend({
/**
* Processes the data block at offset.
*
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
*
* @example
*
* mode.processBlock(data.words, offset);
*/
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher;
var blockSize = cipher.blockSize;
// Remember this block to use with next block
var thisBlock = words.slice(offset, offset + blockSize);
// Decrypt and XOR
cipher.decryptBlock(words, offset);
xorBlock.call(this, words, offset, blockSize);
// This block becomes the previous block
this._prevBlock = thisBlock;
}
});
function xorBlock(words, offset, blockSize) {
// Shortcut
var iv = this._iv;
// Choose mixing block
if (iv) {
var block = iv;
// Remove IV for subsequent blocks
this._iv = undefined;
} else {
var block = this._prevBlock;
}
// XOR blocks
for (var i = 0; i < blockSize; i++) {
words[offset + i] ^= block[i];
}
}
return CBC;
}());
/**
* Padding namespace.
*/
var C_pad = C.pad = {};
/**
* PKCS #5/7 padding strategy.
*/
var Pkcs7 = C_pad.Pkcs7 = {
/**
* Pads data using the algorithm defined in PKCS #5/7.
*
* @param {WordArray} data The data to pad.
* @param {number} blockSize The multiple that the data should be padded to.
*
* @static
*
* @example
*
* CryptoJS.pad.Pkcs7.pad(wordArray, 4);
*/
pad: function (data, blockSize) {
// Shortcut
var blockSizeBytes = blockSize * 4;
// Count padding bytes
var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;
// Create padding word
var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes;
// Create padding
var paddingWords = [];
for (var i = 0; i < nPaddingBytes; i += 4) {
paddingWords.push(paddingWord);
}
var padding = WordArray.create(paddingWords, nPaddingBytes);
// Add padding
data.concat(padding);
},
/**
* Unpads data that had been padded using the algorithm defined in PKCS #5/7.
*
* @param {WordArray} data The data to unpad.
*
* @static
*
* @example
*
* CryptoJS.pad.Pkcs7.unpad(wordArray);
*/
unpad: function (data) {
// Get number of padding bytes from last byte
var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
// Remove padding
data.sigBytes -= nPaddingBytes;
}
};
/**
* Abstract base block cipher template.
*
* @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
*/
var BlockCipher = C_lib.BlockCipher = Cipher.extend({
/**
* Configuration options.
*
* @property {Mode} mode The block mode to use. Default: CBC
* @property {Padding} padding The padding strategy to use. Default: Pkcs7
*/
cfg: Cipher.cfg.extend({
mode: CBC,
padding: Pkcs7
}),
reset: function () {
// Reset cipher
Cipher.reset.call(this);
// Shortcuts
var cfg = this.cfg;
var iv = cfg.iv;
var mode = cfg.mode;
// Reset block mode
if (this._xformMode == this._ENC_XFORM_MODE) {
var modeCreator = mode.createEncryptor;
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
var modeCreator = mode.createDecryptor;
// Keep at least one block in the buffer for unpadding
this._minBufferSize = 1;
}
if (this._mode && this._mode.__creator == modeCreator) {
this._mode.init(this, iv && iv.words);
} else {
this._mode = modeCreator.call(mode, this, iv && iv.words);
this._mode.__creator = modeCreator;
}
},
_doProcessBlock: function (words, offset) {
this._mode.processBlock(words, offset);
},
_doFinalize: function () {
// Shortcut
var padding = this.cfg.padding;
// Finalize
if (this._xformMode == this._ENC_XFORM_MODE) {
// Pad data
padding.pad(this._data, this.blockSize);
// Process final blocks
var finalProcessedBlocks = this._process(!!'flush');
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
// Process final blocks
var finalProcessedBlocks = this._process(!!'flush');
// Unpad data
padding.unpad(finalProcessedBlocks);
}
return finalProcessedBlocks;
},
blockSize: 128/32
});
/**
* A collection of cipher parameters.
*
* @property {WordArray} ciphertext The raw ciphertext.
* @property {WordArray} key The key to this ciphertext.
* @property {WordArray} iv The IV used in the ciphering operation.
* @property {WordArray} salt The salt used with a key derivation function.
* @property {Cipher} algorithm The cipher algorithm.
* @property {Mode} mode The block mode used in the ciphering operation.
* @property {Padding} padding The padding scheme used in the ciphering operation.
* @property {number} blockSize The block size of the cipher.
* @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
*/
var CipherParams = C_lib.CipherParams = Base.extend({
/**
* Initializes a newly created cipher params object.
*
* @param {Object} cipherParams An object with any of the possible cipher parameters.
*
* @example
*
* var cipherParams = CryptoJS.lib.CipherParams.create({
* ciphertext: ciphertextWordArray,
* key: keyWordArray,
* iv: ivWordArray,
* salt: saltWordArray,
* algorithm: CryptoJS.algo.AES,
* mode: CryptoJS.mode.CBC,
* padding: CryptoJS.pad.PKCS7,
* blockSize: 4,
* formatter: CryptoJS.format.OpenSSL
* });
*/
init: function (cipherParams) {
this.mixIn(cipherParams);
},
/**
* Converts this cipher params object to a string.
*
* @param {Format} formatter (Optional) The formatting strategy to use.
*
* @return {string} The stringified cipher params.
*
* @throws Error If neither the formatter nor the default formatter is set.
*
* @example
*
* var string = cipherParams + '';
* var string = cipherParams.toString();
* var string = cipherParams.toString(CryptoJS.format.OpenSSL);
*/
toString: function (formatter) {
return (formatter || this.formatter).stringify(this);
}
});
/**
* Format namespace.
*/
var C_format = C.format = {};
/**
* OpenSSL formatting strategy.
*/
var OpenSSLFormatter = C_format.OpenSSL = {
/**
* Converts a cipher params object to an OpenSSL-compatible string.
*
* @param {CipherParams} cipherParams The cipher params object.
*
* @return {string} The OpenSSL-compatible string.
*
* @static
*
* @example
*
* var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
*/
stringify: function (cipherParams) {
// Shortcuts
var ciphertext = cipherParams.ciphertext;
var salt = cipherParams.salt;
// Format
if (salt) {
var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
} else {
var wordArray = ciphertext;
}
return wordArray.toString(Base64);
},
/**
* Converts an OpenSSL-compatible string to a cipher params object.
*
* @param {string} openSSLStr The OpenSSL-compatible string.
*
* @return {CipherParams} The cipher params object.
*
* @static
*
* @example
*
* var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
*/
parse: function (openSSLStr) {
// Parse base64
var ciphertext = Base64.parse(openSSLStr);
// Shortcut
var ciphertextWords = ciphertext.words;
// Test for salt
if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
// Extract salt
var salt = WordArray.create(ciphertextWords.slice(2, 4));
// Remove salt from ciphertext
ciphertextWords.splice(0, 4);
ciphertext.sigBytes -= 16;
}
return CipherParams.create({ ciphertext: ciphertext, salt: salt });
}
};
/**
* A cipher wrapper that returns ciphertext as a serializable cipher params object.
*/
var SerializableCipher = C_lib.SerializableCipher = Base.extend({
/**
* Configuration options.
*
* @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
*/
cfg: Base.extend({
format: OpenSSLFormatter
}),
/**
* Encrypts a message.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {WordArray|string} message The message to encrypt.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {CipherParams} A cipher params object.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
*/
encrypt: function (cipher, message, key, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Encrypt
var encryptor = cipher.createEncryptor(key, cfg);
var ciphertext = encryptor.finalize(message);
// Shortcut
var cipherCfg = encryptor.cfg;
// Create and return serializable cipher params
return CipherParams.create({
ciphertext: ciphertext,
key: key,
iv: cipherCfg.iv,
algorithm: cipher,
mode: cipherCfg.mode,
padding: cipherCfg.padding,
blockSize: cipher.blockSize,
formatter: cfg.format
});
},
/**
* Decrypts serialized ciphertext.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {WordArray} The plaintext.
*
* @static
*
* @example
*
* var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
* var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
*/
decrypt: function (cipher, ciphertext, key, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Convert string to CipherParams
ciphertext = this._parse(ciphertext, cfg.format);
// Decrypt
var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);
return plaintext;
},
/**
* Converts serialized ciphertext to CipherParams,
* else assumed CipherParams already and returns ciphertext unchanged.
*
* @param {CipherParams|string} ciphertext The ciphertext.
* @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
*
* @return {CipherParams} The unserialized ciphertext.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
*/
_parse: function (ciphertext, format) {
if (typeof ciphertext == 'string') {
return format.parse(ciphertext, this);
} else {
return ciphertext;
}
}
});
/**
* Key derivation function namespace.
*/
var C_kdf = C.kdf = {};
/**
* OpenSSL key derivation function.
*/
var OpenSSLKdf = C_kdf.OpenSSL = {
/**
* Derives a key and IV from a password.
*
* @param {string} password The password to derive from.
* @param {number} keySize The size in words of the key to generate.
* @param {number} ivSize The size in words of the IV to generate.
* @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
*
* @return {CipherParams} A cipher params object with the key, IV, and salt.
*
* @static
*
* @example
*
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
*/
execute: function (password, keySize, ivSize, salt) {
// Generate random salt
if (!salt) {
salt = WordArray.random(64/8);
}
// Derive key and IV
var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt);
// Separate key and IV
var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
key.sigBytes = keySize * 4;
// Return params
return CipherParams.create({ key: key, iv: iv, salt: salt });
}
};
/**
* A serializable cipher wrapper that derives the key from a password,
* and returns ciphertext as a serializable cipher params object.
*/
var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({
/**
* Configuration options.
*
* @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
*/
cfg: SerializableCipher.cfg.extend({
kdf: OpenSSLKdf
}),
/**
* Encrypts a message using a password.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {WordArray|string} message The message to encrypt.
* @param {string} password The password.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {CipherParams} A cipher params object.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
*/
encrypt: function (cipher, message, password, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Derive key and other params
var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);
// Add IV to config
cfg.iv = derivedParams.iv;
// Encrypt
var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg);
// Mix in derived params
ciphertext.mixIn(derivedParams);
return ciphertext;
},
/**
* Decrypts serialized ciphertext using a password.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
* @param {string} password The password.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {WordArray} The plaintext.
*
* @static
*
* @example
*
* var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
* var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
*/
decrypt: function (cipher, ciphertext, password, cfg) {
// Apply config defaults
cfg = this.cfg.extend(cfg);
// Convert string to CipherParams
ciphertext = this._parse(ciphertext, cfg.format);
// Derive key and other params
var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt);
// Add IV to config
cfg.iv = derivedParams.iv;
// Decrypt
var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg);
return plaintext;
}
});
}());
}));
/***/ }),
/* 2 */
/***/ (function(module, exports) {
/**
*
* Conversion functions
*
**/
var RADIX = 3;
var RADIX_BYTES = 256;
var MAX_TRIT_VALUE = 1;
var MIN_TRIT_VALUE = -1;
var BYTE_HASH_LENGTH = 48;
// All possible tryte values
var trytesAlphabet = "9ABCDEFGHIJKLMNOPQRSTUVWXYZ"
// map of all trits representations
var trytesTrits = [
[ 0, 0, 0],
[ 1, 0, 0],
[-1, 1, 0],
[ 0, 1, 0],
[ 1, 1, 0],
[-1, -1, 1],
[ 0, -1, 1],
[ 1, -1, 1],
[-1, 0, 1],
[ 0, 0, 1],
[ 1, 0, 1],
[-1, 1, 1],
[ 0, 1, 1],
[ 1, 1, 1],
[-1, -1, -1],
[ 0, -1, -1],
[ 1, -1, -1],
[-1, 0, -1],
[ 0, 0, -1],
[ 1, 0, -1],
[-1, 1, -1],
[ 0, 1, -1],
[ 1, 1, -1],
[-1, -1, 0],
[ 0, -1, 0],
[ 1, -1, 0],
[-1, 0, 0]
];
/**
* Converts trytes into trits
*
* @method trits
* @param {String|Int} input Tryte value to be converted. Can either be string or int
* @param {Array} state (optional) state to be modified
* @returns {Array} trits
**/
var trits = function( input, state ) {
var trits = state || [];
if (Number.isInteger(input)) {
var absoluteValue = input < 0 ? -input : input;
while (absoluteValue > 0) {
var remainder = absoluteValue % 3;
absoluteValue = Math.floor(absoluteValue / 3);
if (remainder > 1) {
remainder = -1;
absoluteValue++;
}
trits[trits.length] = remainder;
}
if (input < 0) {
for (var i = 0; i < trits.length; i++) {
trits[i] = -trits[i];
}
}
} else {
for (var i = 0; i < input.length; i++) {
var index = trytesAlphabet.indexOf(input.charAt(i));
trits[i * 3] = trytesTrits[index][0];
trits[i * 3 + 1] = trytesTrits[index][1];
trits[i * 3 + 2] = trytesTrits[index][2];
}
}
return trits;
}
/**
* Converts trits into trytes
*
* @method trytes
* @param {Array} trits
* @returns {String} trytes
**/
var trytes = function(trits) {
var trytes = "";
for ( var i = 0; i < trits.length; i += 3 ) {
// Iterate over all possible tryte values to find correct trit representation
for ( var j = 0; j < trytesAlphabet.length; j++ ) {
if ( trytesTrits[ j ][ 0 ] === trits[ i ] && trytesTrits[ j ][ 1 ] === trits[ i + 1 ] && trytesTrits[ j ][ 2 ] === trits[ i + 2 ] ) {
trytes += trytesAlphabet.charAt( j );
break;
}
}
}
return trytes;
}
/**
* Converts trits into an integer value
*
* @method value
* @param {Array} trits
* @returns {int} value
**/
var value = function(trits) {
var returnValue = 0;
for ( var i = trits.length; i-- > 0; ) {
returnValue = returnValue * 3 + trits[ i ];
}
return returnValue;
}
/**
* Converts an integer value to trits
*
* @method value
* @param {Int} value
* @returns {Array} trits
**/
var fromValue = function(value) {
var destination = [];
var absoluteValue = value < 0 ? -value : value;
var i = 0;
while( absoluteValue > 0 ) {
var remainder = ( absoluteValue % RADIX );
absoluteValue = Math.floor( absoluteValue / RADIX );
if ( remainder > MAX_TRIT_VALUE ) {
remainder = MIN_TRIT_VALUE;
absoluteValue++;
}
destination[ i ] = remainder;
i++;
}
if ( value < 0 ) {
for ( var j = 0; j < destination.length; j++ ) {
// switch values
destination[ j ] = destination[ j ] === 0 ? 0: -destination[ j ];
}
}
return destination;
}
module.exports = {
trits : trits,
trytes : trytes,
value : value,
fromValue : fromValue
};
/***/ }),
/* 3 */
/***/ (function(module, exports, __webpack_require__) {
var Converter = __webpack_require__(2);
/**
** Cryptographic related functions to IOTA's Curl (sponge function)
**/
var NUMBER_OF_ROUNDS = 81;
var HASH_LENGTH = 243;
var STATE_LENGTH = 3 * HASH_LENGTH;
function Curl(rounds) {
if (rounds) {
this.rounds = rounds;
} else {
this.rounds = NUMBER_OF_ROUNDS;
}
// truth table
this.truthTable = [1, 0, -1, 2, 1, -1, 0, 2, -1, 1, 0];
}
Curl.HASH_LENGTH = HASH_LENGTH;
/**
* Initializes the state with STATE_LENGTH trits
*
* @method initialize
**/
Curl.prototype.initialize = function(state, length) {
if (state) {
this.state = state;
} else {
this.state = [];
for (var i = 0; i < STATE_LENGTH; i++) {
this.state[i] = 0;
}
}
}
Curl.prototype.reset = function() {
this.initialize();
}
/**
* Sponge absorb function
*
* @method absorb
**/
Curl.prototype.absorb = function(trits, offset, length) {
do {
var i = 0;
var limit = (length < HASH_LENGTH ? length : HASH_LENGTH);
while (i < limit) {
this.state[i++] = trits[offset++];
}
this.transform();
} while (( length -= HASH_LENGTH ) > 0)
}
/**
* Sponge squeeze function
*
* @method squeeze
**/
Curl.prototype.squeeze = function(trits, offset, length) {
do {
var i = 0;
var limit = (length < HASH_LENGTH ? length : HASH_LENGTH);
while (i < limit) {
trits[offset++] = this.state[i++];
}
this.transform();
} while (( length -= HASH_LENGTH ) > 0)
}
/**
* Sponge transform function
*
* @method transform
**/
Curl.prototype.transform = function() {
var stateCopy = [], index = 0;
for (var round = 0; round < this.rounds; round++) {
stateCopy = this.state.slice();
for (var i = 0; i < STATE_LENGTH; i++) {
this.state[i] = this.truthTable[stateCopy[index] + (stateCopy[index += (index < 365 ? 364 : -365)] << 2) + 5];
}
}
}
module.exports = Curl
/***/ }),
/* 4 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(14), __webpack_require__(15));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./sha1", "./hmac"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var Base = C_lib.Base;
var WordArray = C_lib.WordArray;
var C_algo = C.algo;
var MD5 = C_algo.MD5;
/**
* This key derivation function is meant to conform with EVP_BytesToKey.
* www.openssl.org/docs/crypto/EVP_BytesToKey.html
*/
var EvpKDF = C_algo.EvpKDF = Base.extend({
/**
* Configuration options.
*
* @property {number} keySize The key size in words to generate. Default: 4 (128 bits)
* @property {Hasher} hasher The hash algorithm to use. Default: MD5
* @property {number} iterations The number of iterations to perform. Default: 1
*/
cfg: Base.extend({
keySize: 128/32,
hasher: MD5,
iterations: 1
}),
/**
* Initializes a newly created key derivation function.
*
* @param {Object} cfg (Optional) The configuration options to use for the derivation.
*
* @example
*
* var kdf = CryptoJS.algo.EvpKDF.create();
* var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8 });
* var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8, iterations: 1000 });
*/
init: function (cfg) {
this.cfg = this.cfg.extend(cfg);
},
/**
* Derives a key from a password.
*
* @param {WordArray|string} password The password.
* @param {WordArray|string} salt A salt.
*
* @return {WordArray} The derived key.
*
* @example
*
* var key = kdf.compute(password, salt);
*/
compute: function (password, salt) {
// Shortcut
var cfg = this.cfg;
// Init hasher
var hasher = cfg.hasher.create();
// Initial values
var derivedKey = WordArray.create();
// Shortcuts
var derivedKeyWords = derivedKey.words;
var keySize = cfg.keySize;
var iterations = cfg.iterations;
// Generate key
while (derivedKeyWords.length < keySize) {
if (block) {
hasher.update(block);
}
var block = hasher.update(password).finalize(salt);
hasher.reset();
// Iterations
for (var i = 1; i < iterations; i++) {
block = hasher.finalize(block);
hasher.reset();
}
derivedKey.concat(block);
}
derivedKey.sigBytes = keySize * 4;
return derivedKey;
}
});
/**
* Derives a key from a password.
*
* @param {WordArray|string} password The password.
* @param {WordArray|string} salt A salt.
* @param {Object} cfg (Optional) The configuration options to use for this computation.
*
* @return {WordArray} The derived key.
*
* @static
*
* @example
*
* var key = CryptoJS.EvpKDF(password, salt);
* var key = CryptoJS.EvpKDF(password, salt, { keySize: 8 });
* var key = CryptoJS.EvpKDF(password, salt, { keySize: 8, iterations: 1000 });
*/
C.EvpKDF = function (password, salt, cfg) {
return EvpKDF.create(cfg).compute(password, salt);
};
}());
return CryptoJS.EvpKDF;
}));
/***/ }),
/* 5 */
/***/ (function(module, exports, __webpack_require__) {
var CryptoJS = __webpack_require__(19);
var Converter = __webpack_require__(2);
var Curl = __webpack_require__(3);
var WConverter = __webpack_require__(49);
var BIT_HASH_LENGTH = 384;
function Kerl() {
this.k = CryptoJS.algo.SHA3.create();
this.k.init({
outputLength: BIT_HASH_LENGTH
});
}
Kerl.BIT_HASH_LENGTH = BIT_HASH_LENGTH;
Kerl.HASH_LENGTH = Curl.HASH_LENGTH;
Kerl.prototype.initialize = function(state) {}
Kerl.prototype.reset = function() {
this.k.reset();
}
Kerl.prototype.absorb = function(trits, offset, length) {
if (length && ((length % 243) !== 0)) {
throw new Error('Illegal length provided');
}
do {
var limit = (length < Curl.HASH_LENGTH ? length : Curl.HASH_LENGTH);
var trit_state = trits.slice(offset, offset + limit);
offset += limit;
// convert trit state to words
var wordsToAbsorb = WConverter.trits_to_words(trit_state);
// absorb the trit stat as wordarray
this.k.update(
CryptoJS.lib.WordArray.create(wordsToAbsorb));
} while ((length -= Curl.HASH_LENGTH) > 0);
}
Kerl.prototype.squeeze = function(trits, offset, length) {
if (length && ((length % 243) !== 0)) {
throw new Error('Illegal length provided');
}
do {
// get the hash digest
var kCopy = this.k.clone();
var final = kCopy.finalize();
// Convert words to trits and then map it into the internal state
var trit_state = WConverter.words_to_trits(final.words);
var i = 0;
var limit = (length < Curl.HASH_LENGTH ? length : Curl.HASH_LENGTH);
while (i < limit) {
trits[offset++] = trit_state[i++];
}
this.reset();
for (i = 0; i < final.words.length; i++) {
final.words[i] = final.words[i] ^ 0xFFFFFFFF;
}
this.k.update(final);
} while ((length -= Curl.HASH_LENGTH) > 0);
}
module.exports = Kerl;
/***/ }),
/* 6 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var C_enc = C.enc;
/**
* Base64 encoding strategy.
*/
var Base64 = C_enc.Base64 = {
/**
* Converts a word array to a Base64 string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The Base64 string.
*
* @static
*
* @example
*
* var base64String = CryptoJS.enc.Base64.stringify(wordArray);
*/
stringify: function (wordArray) {
// Shortcuts
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
var map = this._map;
// Clamp excess bits
wordArray.clamp();
// Convert
var base64Chars = [];
for (var i = 0; i < sigBytes; i += 3) {
var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;
var triplet = (byte1 << 16) | (byte2 << 8) | byte3;
for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) {
base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
}
}
// Add padding
var paddingChar = map.charAt(64);
if (paddingChar) {
while (base64Chars.length % 4) {
base64Chars.push(paddingChar);
}
}
return base64Chars.join('');
},
/**
* Converts a Base64 string to a word array.
*
* @param {string} base64Str The Base64 string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Base64.parse(base64String);
*/
parse: function (base64Str) {
// Shortcuts
var base64StrLength = base64Str.length;
var map = this._map;
var reverseMap = this._reverseMap;
if (!reverseMap) {
reverseMap = this._reverseMap = [];
for (var j = 0; j < map.length; j++) {
reverseMap[map.charCodeAt(j)] = j;
}
}
// Ignore padding
var paddingChar = map.charAt(64);
if (paddingChar) {
var paddingIndex = base64Str.indexOf(paddingChar);
if (paddingIndex !== -1) {
base64StrLength = paddingIndex;
}
}
// Convert
return parseLoop(base64Str, base64StrLength, reverseMap);
},
_map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
};
function parseLoop(base64Str, base64StrLength, reverseMap) {
var words = [];
var nBytes = 0;
for (var i = 0; i < base64StrLength; i++) {
if (i % 4) {
var bits1 = reverseMap[base64Str.charCodeAt(i - 1)] << ((i % 4) * 2);
var bits2 = reverseMap[base64Str.charCodeAt(i)] >>> (6 - (i % 4) * 2);
words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8);
nBytes++;
}
}
return WordArray.create(words, nBytes);
}
}());
return CryptoJS.enc.Base64;
}));
/***/ }),
/* 7 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function (Math) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var Hasher = C_lib.Hasher;
var C_algo = C.algo;
// Constants table
var T = [];
// Compute constants
(function () {
for (var i = 0; i < 64; i++) {
T[i] = (Math.abs(Math.sin(i + 1)) * 0x100000000) | 0;
}
}());
/**
* MD5 hash algorithm.
*/
var MD5 = C_algo.MD5 = Hasher.extend({
_doReset: function () {
this._hash = new WordArray.init([
0x67452301, 0xefcdab89,
0x98badcfe, 0x10325476
]);
},
_doProcessBlock: function (M, offset) {
// Swap endian
for (var i = 0; i < 16; i++) {
// Shortcuts
var offset_i = offset + i;
var M_offset_i = M[offset_i];
M[offset_i] = (
(((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
(((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
);
}
// Shortcuts
var H = this._hash.words;
var M_offset_0 = M[offset + 0];
var M_offset_1 = M[offset + 1];
var M_offset_2 = M[offset + 2];
var M_offset_3 = M[offset + 3];
var M_offset_4 = M[offset + 4];
var M_offset_5 = M[offset + 5];
var M_offset_6 = M[offset + 6];
var M_offset_7 = M[offset + 7];
var M_offset_8 = M[offset + 8];
var M_offset_9 = M[offset + 9];
var M_offset_10 = M[offset + 10];
var M_offset_11 = M[offset + 11];
var M_offset_12 = M[offset + 12];
var M_offset_13 = M[offset + 13];
var M_offset_14 = M[offset + 14];
var M_offset_15 = M[offset + 15];
// Working varialbes
var a = H[0];
var b = H[1];
var c = H[2];
var d = H[3];
// Computation
a = FF(a, b, c, d, M_offset_0, 7, T[0]);
d = FF(d, a, b, c, M_offset_1, 12, T[1]);
c = FF(c, d, a, b, M_offset_2, 17, T[2]);
b = FF(b, c, d, a, M_offset_3, 22, T[3]);
a = FF(a, b, c, d, M_offset_4, 7, T[4]);
d = FF(d, a, b, c, M_offset_5, 12, T[5]);
c = FF(c, d, a, b, M_offset_6, 17, T[6]);
b = FF(b, c, d, a, M_offset_7, 22, T[7]);
a = FF(a, b, c, d, M_offset_8, 7, T[8]);
d = FF(d, a, b, c, M_offset_9, 12, T[9]);
c = FF(c, d, a, b, M_offset_10, 17, T[10]);
b = FF(b, c, d, a, M_offset_11, 22, T[11]);
a = FF(a, b, c, d, M_offset_12, 7, T[12]);
d = FF(d, a, b, c, M_offset_13, 12, T[13]);
c = FF(c, d, a, b, M_offset_14, 17, T[14]);
b = FF(b, c, d, a, M_offset_15, 22, T[15]);
a = GG(a, b, c, d, M_offset_1, 5, T[16]);
d = GG(d, a, b, c, M_offset_6, 9, T[17]);
c = GG(c, d, a, b, M_offset_11, 14, T[18]);
b = GG(b, c, d, a, M_offset_0, 20, T[19]);
a = GG(a, b, c, d, M_offset_5, 5, T[20]);
d = GG(d, a, b, c, M_offset_10, 9, T[21]);
c = GG(c, d, a, b, M_offset_15, 14, T[22]);
b = GG(b, c, d, a, M_offset_4, 20, T[23]);
a = GG(a, b, c, d, M_offset_9, 5, T[24]);
d = GG(d, a, b, c, M_offset_14, 9, T[25]);
c = GG(c, d, a, b, M_offset_3, 14, T[26]);
b = GG(b, c, d, a, M_offset_8, 20, T[27]);
a = GG(a, b, c, d, M_offset_13, 5, T[28]);
d = GG(d, a, b, c, M_offset_2, 9, T[29]);
c = GG(c, d, a, b, M_offset_7, 14, T[30]);
b = GG(b, c, d, a, M_offset_12, 20, T[31]);
a = HH(a, b, c, d, M_offset_5, 4, T[32]);
d = HH(d, a, b, c, M_offset_8, 11, T[33]);
c = HH(c, d, a, b, M_offset_11, 16, T[34]);
b = HH(b, c, d, a, M_offset_14, 23, T[35]);
a = HH(a, b, c, d, M_offset_1, 4, T[36]);
d = HH(d, a, b, c, M_offset_4, 11, T[37]);
c = HH(c, d, a, b, M_offset_7, 16, T[38]);
b = HH(b, c, d, a, M_offset_10, 23, T[39]);
a = HH(a, b, c, d, M_offset_13, 4, T[40]);
d = HH(d, a, b, c, M_offset_0, 11, T[41]);
c = HH(c, d, a, b, M_offset_3, 16, T[42]);
b = HH(b, c, d, a, M_offset_6, 23, T[43]);
a = HH(a, b, c, d, M_offset_9, 4, T[44]);
d = HH(d, a, b, c, M_offset_12, 11, T[45]);
c = HH(c, d, a, b, M_offset_15, 16, T[46]);
b = HH(b, c, d, a, M_offset_2, 23, T[47]);
a = II(a, b, c, d, M_offset_0, 6, T[48]);
d = II(d, a, b, c, M_offset_7, 10, T[49]);
c = II(c, d, a, b, M_offset_14, 15, T[50]);
b = II(b, c, d, a, M_offset_5, 21, T[51]);
a = II(a, b, c, d, M_offset_12, 6, T[52]);
d = II(d, a, b, c, M_offset_3, 10, T[53]);
c = II(c, d, a, b, M_offset_10, 15, T[54]);
b = II(b, c, d, a, M_offset_1, 21, T[55]);
a = II(a, b, c, d, M_offset_8, 6, T[56]);
d = II(d, a, b, c, M_offset_15, 10, T[57]);
c = II(c, d, a, b, M_offset_6, 15, T[58]);
b = II(b, c, d, a, M_offset_13, 21, T[59]);
a = II(a, b, c, d, M_offset_4, 6, T[60]);
d = II(d, a, b, c, M_offset_11, 10, T[61]);
c = II(c, d, a, b, M_offset_2, 15, T[62]);
b = II(b, c, d, a, M_offset_9, 21, T[63]);
// Intermediate hash value
H[0] = (H[0] + a) | 0;
H[1] = (H[1] + b) | 0;
H[2] = (H[2] + c) | 0;
H[3] = (H[3] + d) | 0;
},
_doFinalize: function () {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var nBitsTotal = this._nDataBytes * 8;
var nBitsLeft = data.sigBytes * 8;
// Add padding
dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
var nBitsTotalH = Math.floor(nBitsTotal / 0x100000000);
var nBitsTotalL = nBitsTotal;
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = (
(((nBitsTotalH << 8) | (nBitsTotalH >>> 24)) & 0x00ff00ff) |
(((nBitsTotalH << 24) | (nBitsTotalH >>> 8)) & 0xff00ff00)
);
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
(((nBitsTotalL << 8) | (nBitsTotalL >>> 24)) & 0x00ff00ff) |
(((nBitsTotalL << 24) | (nBitsTotalL >>> 8)) & 0xff00ff00)
);
data.sigBytes = (dataWords.length + 1) * 4;
// Hash final blocks
this._process();
// Shortcuts
var hash = this._hash;
var H = hash.words;
// Swap endian
for (var i = 0; i < 4; i++) {
// Shortcut
var H_i = H[i];
H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
(((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
}
// Return final computed hash
return hash;
},
clone: function () {
var clone = Hasher.clone.call(this);
clone._hash = this._hash.clone();
return clone;
}
});
function FF(a, b, c, d, x, s, t) {
var n = a + ((b & c) | (~b & d)) + x + t;
return ((n << s) | (n >>> (32 - s))) + b;
}
function GG(a, b, c, d, x, s, t) {
var n = a + ((b & d) | (c & ~d)) + x + t;
return ((n << s) | (n >>> (32 - s))) + b;
}
function HH(a, b, c, d, x, s, t) {
var n = a + (b ^ c ^ d) + x + t;
return ((n << s) | (n >>> (32 - s))) + b;
}
function II(a, b, c, d, x, s, t) {
var n = a + (c ^ (b | ~d)) + x + t;
return ((n << s) | (n >>> (32 - s))) + b;
}
/**
* Shortcut function to the hasher's object interface.
*
* @param {WordArray|string} message The message to hash.
*
* @return {WordArray} The hash.
*
* @static
*
* @example
*
* var hash = CryptoJS.MD5('message');
* var hash = CryptoJS.MD5(wordArray);
*/
C.MD5 = Hasher._createHelper(MD5);
/**
* Shortcut function to the HMAC's object interface.
*
* @param {WordArray|string} message The message to hash.
* @param {WordArray|string} key The secret key.
*
* @return {WordArray} The HMAC.
*
* @static
*
* @example
*
* var hmac = CryptoJS.HmacMD5(message, key);
*/
C.HmacMD5 = Hasher._createHmacHelper(MD5);
}(Math));
return CryptoJS.MD5;
}));
/***/ }),
/* 8 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function (undefined) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var Base = C_lib.Base;
var X32WordArray = C_lib.WordArray;
/**
* x64 namespace.
*/
var C_x64 = C.x64 = {};
/**
* A 64-bit word.
*/
var X64Word = C_x64.Word = Base.extend({
/**
* Initializes a newly created 64-bit word.
*
* @param {number} high The high 32 bits.
* @param {number} low The low 32 bits.
*
* @example
*
* var x64Word = CryptoJS.x64.Word.create(0x00010203, 0x04050607);
*/
init: function (high, low) {
this.high = high;
this.low = low;
}
/**
* Bitwise NOTs this word.
*
* @return {X64Word} A new x64-Word object after negating.
*
* @example
*
* var negated = x64Word.not();
*/
// not: function () {
// var high = ~this.high;
// var low = ~this.low;
// return X64Word.create(high, low);
// },
/**
* Bitwise ANDs this word with the passed word.
*
* @param {X64Word} word The x64-Word to AND with this word.
*
* @return {X64Word} A new x64-Word object after ANDing.
*
* @example
*
* var anded = x64Word.and(anotherX64Word);
*/
// and: function (word) {
// var high = this.high & word.high;
// var low = this.low & word.low;
// return X64Word.create(high, low);
// },
/**
* Bitwise ORs this word with the passed word.
*
* @param {X64Word} word The x64-Word to OR with this word.
*
* @return {X64Word} A new x64-Word object after ORing.
*
* @example
*
* var ored = x64Word.or(anotherX64Word);
*/
// or: function (word) {
// var high = this.high | word.high;
// var low = this.low | word.low;
// return X64Word.create(high, low);
// },
/**
* Bitwise XORs this word with the passed word.
*
* @param {X64Word} word The x64-Word to XOR with this word.
*
* @return {X64Word} A new x64-Word object after XORing.
*
* @example
*
* var xored = x64Word.xor(anotherX64Word);
*/
// xor: function (word) {
// var high = this.high ^ word.high;
// var low = this.low ^ word.low;
// return X64Word.create(high, low);
// },
/**
* Shifts this word n bits to the left.
*
* @param {number} n The number of bits to shift.
*
* @return {X64Word} A new x64-Word object after shifting.
*
* @example
*
* var shifted = x64Word.shiftL(25);
*/
// shiftL: function (n) {
// if (n < 32) {
// var high = (this.high << n) | (this.low >>> (32 - n));
// var low = this.low << n;
// } else {
// var high = this.low << (n - 32);
// var low = 0;
// }
// return X64Word.create(high, low);
// },
/**
* Shifts this word n bits to the right.
*
* @param {number} n The number of bits to shift.
*
* @return {X64Word} A new x64-Word object after shifting.
*
* @example
*
* var shifted = x64Word.shiftR(7);
*/
// shiftR: function (n) {
// if (n < 32) {
// var low = (this.low >>> n) | (this.high << (32 - n));
// var high = this.high >>> n;
// } else {
// var low = this.high >>> (n - 32);
// var high = 0;
// }
// return X64Word.create(high, low);
// },
/**
* Rotates this word n bits to the left.
*
* @param {number} n The number of bits to rotate.
*
* @return {X64Word} A new x64-Word object after rotating.
*
* @example
*
* var rotated = x64Word.rotL(25);
*/
// rotL: function (n) {
// return this.shiftL(n).or(this.shiftR(64 - n));
// },
/**
* Rotates this word n bits to the right.
*
* @param {number} n The number of bits to rotate.
*
* @return {X64Word} A new x64-Word object after rotating.
*
* @example
*
* var rotated = x64Word.rotR(7);
*/
// rotR: function (n) {
// return this.shiftR(n).or(this.shiftL(64 - n));
// },
/**
* Adds this word with the passed word.
*
* @param {X64Word} word The x64-Word to add with this word.
*
* @return {X64Word} A new x64-Word object after adding.
*
* @example
*
* var added = x64Word.add(anotherX64Word);
*/
// add: function (word) {
// var low = (this.low + word.low) | 0;
// var carry = (low >>> 0) < (this.low >>> 0) ? 1 : 0;
// var high = (this.high + word.high + carry) | 0;
// return X64Word.create(high, low);
// }
});
/**
* An array of 64-bit words.
*
* @property {Array} words The array of CryptoJS.x64.Word objects.
* @property {number} sigBytes The number of significant bytes in this word array.
*/
var X64WordArray = C_x64.WordArray = Base.extend({
/**
* Initializes a newly created word array.
*
* @param {Array} words (Optional) An array of CryptoJS.x64.Word objects.
* @param {number} sigBytes (Optional) The number of significant bytes in the words.
*
* @example
*
* var wordArray = CryptoJS.x64.WordArray.create();
*
* var wordArray = CryptoJS.x64.WordArray.create([
* CryptoJS.x64.Word.create(0x00010203, 0x04050607),
* CryptoJS.x64.Word.create(0x18191a1b, 0x1c1d1e1f)
* ]);
*
* var wordArray = CryptoJS.x64.WordArray.create([
* CryptoJS.x64.Word.create(0x00010203, 0x04050607),
* CryptoJS.x64.Word.create(0x18191a1b, 0x1c1d1e1f)
* ], 10);
*/
init: function (words, sigBytes) {
words = this.words = words || [];
if (sigBytes != undefined) {
this.sigBytes = sigBytes;
} else {
this.sigBytes = words.length * 8;
}
},
/**
* Converts this 64-bit word array to a 32-bit word array.
*
* @return {CryptoJS.lib.WordArray} This word array's data as a 32-bit word array.
*
* @example
*
* var x32WordArray = x64WordArray.toX32();
*/
toX32: function () {
// Shortcuts
var x64Words = this.words;
var x64WordsLength = x64Words.length;
// Convert
var x32Words = [];
for (var i = 0; i < x64WordsLength; i++) {
var x64Word = x64Words[i];
x32Words.push(x64Word.high);
x32Words.push(x64Word.low);
}
return X32WordArray.create(x32Words, this.sigBytes);
},
/**
* Creates a copy of this word array.
*
* @return {X64WordArray} The clone.
*
* @example
*
* var clone = x64WordArray.clone();
*/
clone: function () {
var clone = Base.clone.call(this);
// Clone "words" array
var words = clone.words = this.words.slice(0);
// Clone each X64Word object
var wordsLength = words.length;
for (var i = 0; i < wordsLength; i++) {
words[i] = words[i].clone();
}
return clone;
}
});
}());
return CryptoJS;
}));
/***/ }),
/* 9 */
/***/ (function(module, exports, __webpack_require__) {
var Curl = __webpack_require__(3);
var Kerl = __webpack_require__(5);
var Converter = __webpack_require__(2);
var tritAdd = __webpack_require__(10);
/**
*
* @constructor bundle
**/
function Bundle() {
// Declare empty bundle
this.bundle = [];
}
/**
*
*
**/
Bundle.prototype.addEntry = function(signatureMessageLength, address, value, tag, timestamp, index) {
for (var i = 0; i < signatureMessageLength; i++) {
var transactionObject = new Object();
transactionObject.address = address;
transactionObject.value = i == 0 ? value : 0;
transactionObject.obsoleteTag = tag;
transactionObject.tag = tag;
transactionObject.timestamp = timestamp;
this.bundle[this.bundle.length] = transactionObject;
}
}
/**
*
*
**/
Bundle.prototype.addTrytes = function(signatureFragments) {
var emptySignatureFragment = '';
var emptyHash = '999999999999999999999999999999999999999999999999999999999999999999999999999999999';
var emptyTag = '9'.repeat(27);
var emptyTimestamp = '9'.repeat(9);
for (var j = 0; emptySignatureFragment.length < 2187; j++) {
emptySignatureFragment += '9';
}
for (var i = 0; i < this.bundle.length; i++) {
// Fill empty signatureMessageFragment
this.bundle[i].signatureMessageFragment = signatureFragments[i] ? signatureFragments[i] : emptySignatureFragment;
// Fill empty trunkTransaction
this.bundle[i].trunkTransaction = emptyHash;
// Fill empty branchTransaction
this.bundle[i].branchTransaction = emptyHash;
this.bundle[i].attachmentTimestamp = emptyTimestamp;
this.bundle[i].attachmentTimestampLowerBound = emptyTimestamp;
this.bundle[i].attachmentTimestampUpperBound = emptyTimestamp;
// Fill empty nonce
this.bundle[i].nonce = emptyTag;
}
}
/**
*
*
**/
Bundle.prototype.finalize = function() {
var validBundle = false;
while(!validBundle) {
var kerl = new Kerl();
kerl.initialize();
for (var i = 0; i < this.bundle.length; i++) {
var valueTrits = Converter.trits(this.bundle[i].value);
while (valueTrits.length < 81) {
valueTrits[valueTrits.length] = 0;
}
var timestampTrits = Converter.trits(this.bundle[i].timestamp);
while (timestampTrits.length < 27) {
timestampTrits[timestampTrits.length] = 0;
}
var currentIndexTrits = Converter.trits(this.bundle[i].currentIndex = i);
while (currentIndexTrits.length < 27) {
currentIndexTrits[currentIndexTrits.length] = 0;
}
var lastIndexTrits = Converter.trits(this.bundle[i].lastIndex = this.bundle.length - 1);
while (lastIndexTrits.length < 27) {
lastIndexTrits[lastIndexTrits.length] = 0;
}
var bundleEssence = Converter.trits(this.bundle[i].address + Converter.trytes(valueTrits) + this.bundle[i].obsoleteTag + Converter.trytes(timestampTrits) + Converter.trytes(currentIndexTrits) + Converter.trytes(lastIndexTrits));
kerl.absorb(bundleEssence, 0, bundleEssence.length);
}
var hash = [];
kerl.squeeze(hash, 0, Curl.HASH_LENGTH);
hash = Converter.trytes(hash);
for (var i = 0; i < this.bundle.length; i++) {
this.bundle[i].bundle = hash;
}
var normalizedHash = this.normalizedBundle(hash);
if(normalizedHash.indexOf(13 /* = M */) != -1) {
// Insecure bundle. Increment Tag and recompute bundle hash.
var increasedTag = tritAdd(Converter.trits(this.bundle[0].obsoleteTag), [1]);
this.bundle[0].obsoleteTag = Converter.trytes(increasedTag);
} else {
validBundle = true;
}
}
}
/**
* Normalizes the bundle hash
*
**/
Bundle.prototype.normalizedBundle = function(bundleHash) {
var normalizedBundle = [];
for (var i = 0; i < 3; i++) {
var sum = 0;
for (var j = 0; j < 27; j++) {
sum += (normalizedBundle[i * 27 + j] = Converter.value(Converter.trits(bundleHash.charAt(i * 27 + j))));
}
if (sum >= 0) {
while (sum-- > 0) {
for (var j = 0; j < 27; j++) {
if (normalizedBundle[i * 27 + j] > -13) {
normalizedBundle[i * 27 + j]--;
break;
}
}
}
} else {
while (sum++ < 0) {
for (var j = 0; j < 27; j++) {
if (normalizedBundle[i * 27 + j] < 13) {
normalizedBundle[i * 27 + j]++;
break;
}
}
}
}
}
return normalizedBundle;
}
module.exports = Bundle;
/***/ }),
/* 10 */
/***/ (function(module, exports) {
/* copyright Paul Handy, 2017 */
function sum( a, b ) {
var s = a + b;
switch( s ) {
case 2: return -1;
case -2: return 1;
default: return s;
}
}
function cons( a, b ) {
if( a === b ) {
return a;
}
return 0;
}
function any( a, b ) {
var s = a + b;
if ( s > 0 ) {
return 1;
} else if ( s < 0 ) {
return -1;
}
return 0;
}
function full_add( a, b, c ) {
var s_a = sum( a, b );
var c_a = cons( a, b );
var c_b = cons( s_a, c );
var c_out = any( c_a, c_b );
var s_out = sum( s_a, c );
return [ s_out, c_out ];
}
function add( a, b ) {
var out = new Array( Math.max( a.length, b.length ) );
var carry = 0;
var a_i, b_i;
for( var i = 0; i < out.length; i++ ) {
a_i = i < a.length ? a[ i ] : 0;
b_i = i < b.length ? b[ i ] : 0;
var f_a = full_add( a_i, b_i, carry );
out[ i ] = f_a[ 0 ];
carry = f_a[ 1 ];
}
return out;
}
module.exports = add;
/***/ }),
/* 11 */
/***/ (function(module, exports, __webpack_require__) {
var Curl = __webpack_require__(3);
var Kerl = __webpack_require__(5);
var Converter = __webpack_require__(2);
var Bundle = __webpack_require__(9);
var add = __webpack_require__(10);
var oldSigning = __webpack_require__(22);
var errors = __webpack_require__(16);
/**
* Signing related functions
*
**/
var key = function(seed, index, length) {
while ((seed.length % 243) !== 0) {
seed.push(0);
}
var indexTrits = Converter.fromValue( index );
var subseed = add( seed.slice( ), indexTrits );
var kerl = new Kerl( );
kerl.initialize( );
kerl.absorb(subseed, 0, subseed.length);
kerl.squeeze(subseed, 0, subseed.length);
kerl.reset( );
kerl.absorb(subseed, 0, subseed.length);
var key = [], offset = 0, buffer = [];
while (length-- > 0) {
for (var i = 0; i < 27; i++) {
kerl.squeeze(buffer, 0, subseed.length);
for (var j = 0; j < 243; j++) {
key[offset++] = buffer[j];
}
}
}
return key;
}
/**
*
*
**/
var digests = function(key) {
var digests = [], buffer = [];
for (var i = 0; i < Math.floor(key.length / 6561); i++) {
var keyFragment = key.slice(i * 6561, (i + 1) * 6561);
for (var j = 0; j < 27; j++) {
buffer = keyFragment.slice(j * 243, (j + 1) * 243);
for (var k = 0; k < 26; k++) {
var kKerl = new Kerl();
kKerl.initialize();
kKerl.absorb(buffer, 0, buffer.length);
kKerl.squeeze(buffer, 0, Curl.HASH_LENGTH);
}
for (var k = 0; k < 243; k++) {
keyFragment[j * 243 + k] = buffer[k];
}
}
var kerl = new Kerl()
kerl.initialize();
kerl.absorb(keyFragment, 0, keyFragment.length);
kerl.squeeze(buffer, 0, Curl.HASH_LENGTH);
for (var j = 0; j < 243; j++) {
digests[i * 243 + j] = buffer[j];
}
}
return digests;
}
/**
*
*
**/
var address = function(digests) {
var addressTrits = [];
var kerl = new Kerl();
kerl.initialize();
kerl.absorb(digests, 0, digests.length);
kerl.squeeze(addressTrits, 0, Curl.HASH_LENGTH);
return addressTrits;
}
/**
*
*
**/
var digest = function(normalizedBundleFragment, signatureFragment) {
var buffer = []
var kerl = new Kerl();
kerl.initialize();
for (var i = 0; i< 27; i++) {
buffer = signatureFragment.slice(i * 243, (i + 1) * 243);
for (var j = normalizedBundleFragment[i] + 13; j-- > 0; ) {
var jKerl = new Kerl();
jKerl.initialize();
jKerl.absorb(buffer, 0, buffer.length);
jKerl.squeeze(buffer, 0, Curl.HASH_LENGTH);
}
kerl.absorb(buffer, 0, buffer.length);
}
kerl.squeeze(buffer, 0, Curl.HASH_LENGTH);
return buffer;
}
/**
*
*
**/
var signatureFragment = function(normalizedBundleFragment, keyFragment) {
var signatureFragment = keyFragment.slice(), hash = [];
var kerl = new Kerl();
for (var i = 0; i < 27; i++) {
hash = signatureFragment.slice(i * 243, (i + 1) * 243);
for (var j = 0; j < 13 - normalizedBundleFragment[i]; j++) {
kerl.initialize();
kerl.reset();
kerl.absorb(hash, 0, hash.length);
kerl.squeeze(hash, 0, Curl.HASH_LENGTH);
}
for (var j = 0; j < 243; j++) {
signatureFragment[i * 243 + j] = hash[j];
}
}
return signatureFragment;
}
/**
*
*
**/
var validateSignatures = function(expectedAddress, signatureFragments, bundleHash) {
if (!bundleHash) {
throw errors.invalidBundleHash();
}
var self = this;
var bundle = new Bundle();
var normalizedBundleFragments = [];
var normalizedBundleHash = bundle.normalizedBundle(bundleHash);
// Split hash into 3 fragments
for (var i = 0; i < 3; i++) {
normalizedBundleFragments[i] = normalizedBundleHash.slice(i * 27, (i + 1) * 27);
}
// Get digests
var digests = [];
for (var i = 0; i < signatureFragments.length; i++) {
var digestBuffer = digest(normalizedBundleFragments[i % 3], Converter.trits(signatureFragments[i]));
for (var j = 0; j < 243; j++) {
digests[i * 243 + j] = digestBuffer[j]
}
}
var address = Converter.trytes(self.address(digests));
console.log("EXPEXTED SIGNATURE:" + expectedAddress);
console.log("GOT SIGNATURE:" + address);
return (expectedAddress === address);
}
module.exports = {
key : key,
digests : digests,
address : address,
digest : digest,
signatureFragment : signatureFragment,
validateSignatures : validateSignatures
}
/***/ }),
/* 12 */
/***/ (function(module, exports) {
/**
* checks if input is correct address
*
* @method isAddress
* @param {string} address
* @returns {boolean}
**/
var isAddress = function(address) {
// TODO: In the future check checksum
// Check if address with checksum
if (address.length === 90) {
if (!isTrytes(address, 90)) {
return false;
}
} else {
if (!isTrytes(address, 81)) {
return false;
}
}
return true;
}
/**
* checks if input is correct trytes consisting of A-Z9
* optionally validate length
*
* @method isTrytes
* @param {string} trytes
* @param {integer} length optional
* @returns {boolean}
**/
var isTrytes = function(trytes, length) {
// If no length specified, just validate the trytes
if (!length) length = "0,"
var regexTrytes = new RegExp("^[9A-Z]{" + length +"}$");
return regexTrytes.test(trytes) && isString(trytes);
}
/**
* checks if input is correct trytes consisting of A-Z9
* optionally validate length
*
* @method isNinesTrytes
* @param {string} trytes
* @returns {boolean}
**/
var isNinesTrytes = function(trytes) {
return /^[9]+$/.test(trytes) && isString(trytes);
}
/**
* checks if integer value
*
* @method isValue
* @param {string} value
* @returns {boolean}
**/
var isValue = function(value) {
// check if correct number
return Number.isInteger(value)
}
/**
* checks whether input is a value or not. Can be a string, float or integer
*
* @method isNum
* @param {int}
* @returns {boolean}
**/
var isNum = function(input) {
return /^(\d+\.?\d{0,15}|\.\d{0,15})$/.test(input);
}
/**
* checks if input is correct hash
*
* @method isHash
* @param {string} hash
* @returns {boolean}
**/
var isHash = function(hash) {
// Check if valid, 81 trytes
if (!isTrytes(hash, 81)) {
return false;
}
return true;
}
/**
* checks whether input is a string or not
*
* @method isString
* @param {string}
* @returns {boolean}
**/
var isString = function(string) {
return typeof string === 'string';
}
/**
* checks whether input is an array or not
*
* @method isArray
* @param {object}
* @returns {boolean}
**/
var isArray = function(array) {
return array instanceof Array;
}
/**
* checks whether input is object or not
*
* @method isObject
* @param {object}
* @returns {boolean}
**/
var isObject = function(object) {
return typeof object === 'object';
}
/**
* checks if input is correct hash
*
* @method isTransfersArray
* @param {array} hash
* @returns {boolean}
**/
var isTransfersArray = function(transfersArray) {
if (!isArray(transfersArray)) return false;
for (var i = 0; i < transfersArray.length; i++) {
var transfer = transfersArray[i];
// Check if valid address
var address = transfer.address;
if (!isAddress(address)) {
return false;
}
// Validity check for value
var value = transfer.value;
if (!isValue(value)) {
return false;
}
// Check if message is correct trytes of any length
var message = transfer.message;
if (!isTrytes(message, "0,")) {
return false;
}
// Check if tag is correct trytes of {0,27} trytes
var tag = transfer.tag || transfer.obsoleteTag;
if (!isTrytes(tag, "0,27")) {
return false;
}
}
return true;
}
/**
* checks if input is list of correct trytes
*
* @method isArrayOfHashes
* @param {list} hashesArray
* @returns {boolean}
**/
var isArrayOfHashes = function(hashesArray) {
if (!isArray(hashesArray)) return false;
for (var i = 0; i < hashesArray.length; i++) {
var hash = hashesArray[i];
// Check if address with checksum
if (hash.length === 90) {
if (!isTrytes(hash, 90)) {
return false;
}
} else {
if (!isTrytes(hash, 81)) {
return false;
}
}
}
return true;
}
/**
* checks if input is list of correct trytes
*
* @method isArrayOfTrytes
* @param {list} trytesArray
* @returns {boolean}
**/
var isArrayOfTrytes = function(trytesArray) {
if (!isArray(trytesArray)) return false;
for (var i = 0; i < trytesArray.length; i++) {
var tryteValue = trytesArray[i];
// Check if correct 2673 trytes
if (!isTrytes(tryteValue, 2673)) {
return false;
}
}
return true;
}
/**
* checks if attached trytes if last 241 trytes are non-zero
*
* @method isArrayOfAttachedTrytes
* @param {array} trytesArray
* @returns {boolean}
**/
var isArrayOfAttachedTrytes = function(trytesArray) {
if (!isArray(trytesArray)) return false;
for (var i = 0; i < trytesArray.length; i++) {
var tryteValue = trytesArray[i];
// Check if correct 2673 trytes
if (!isTrytes(tryteValue, 2673)) {
return false;
}
var lastTrytes = tryteValue.slice(2673 - (3 * 81));
if (/^[9]+$/.test(lastTrytes)) {
return false;
}
}
return true;
}
/**
* checks if correct bundle with transaction object
*
* @method isArrayOfTxObjects
* @param {array} bundle
* @returns {boolean}
**/
var isArrayOfTxObjects = function(bundle) {
if (!isArray(bundle) || bundle.length === 0) return false;
var validArray = true;
bundle.forEach(function(txObject) {
var keysToValidate = [
{
key: 'hash',
validator: isHash,
args: null
}, {
key: 'signatureMessageFragment',
validator: isTrytes,
args: 2187
}, {
key: 'address',
validator: isHash,
args: null
}, {
key: 'value',
validator: isValue,
args: null
}, {
key: 'obsoleteTag',
validator: isTrytes,
args: 27
}, {
key: 'timestamp',
validator: isValue,
args: null
}, {
key: 'currentIndex',
validator: isValue,
args: null
},{
key: 'lastIndex',
validator: isValue,
args: null
}, {
key: 'bundle',
validator: isHash,
args: null
}, {
key: 'trunkTransaction',
validator: isHash,
args: null
}, {
key: 'branchTransaction',
validator: isHash,
args: null
}, {
key: 'tag',
validator: isTrytes,
args: 27
}, {
key: 'attachmentTimestamp',
validator: isValue,
args: null
}, {
key: 'attachmentTimestampLowerBound',
validator: isValue,
args: null
}, {
key: 'attachmentTimestampUpperBound',
validator: isValue,
args: null
}, {
key: 'nonce',
validator: isTrytes,
args: 27
}
]
for (var i = 0; i < keysToValidate.length; i++) {
var key = keysToValidate[i].key;
var validator = keysToValidate[i].validator;
var args = keysToValidate[i].args
// If input does not have keyIndex and address, return false
if (!txObject.hasOwnProperty(key)) {
validArray = false;
break;
}
// If input validator function does not return true, exit
if (!validator(txObject[key], args)) {
validArray = false;
break;
}
}
})
return validArray;
}
/**
* checks if correct inputs list
*
* @method isInputs
* @param {array} inputs
* @returns {boolean}
**/
var isInputs = function(inputs) {
if (!isArray(inputs)) return false;
for (var i = 0; i < inputs.length; i++) {
var input = inputs[i];
// If input does not have keyIndex and address, return false
if (!input.hasOwnProperty('security') || !input.hasOwnProperty('keyIndex') || !input.hasOwnProperty('address')) return false;
if (!isAddress(input.address)) {
return false;
}
if (!isValue(input.security)) {
return false;
}
if (!isValue(input.keyIndex)) {
return false;
}
}
return true;
}
/**
* Checks that a given uri is valid
*
* Valid Examples:
* udp://[2001:db8:a0b:12f0::1]:14265
* udp://[2001:db8:a0b:12f0::1]
* udp://8.8.8.8:14265
* udp://domain.com
* udp://domain2.com:14265
*
* @method isUri
* @param {string} node
* @returns {bool} valid
**/
var isUri = function(node) {
var getInside = /^(udp|tcp):\/\/([\[][^\]\.]*[\]]|[^\[\]:]*)[:]{0,1}([0-9]{1,}$|$)/i;
var stripBrackets = /[\[]{0,1}([^\[\]]*)[\]]{0,1}/;
var uriTest = /((^\s*((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5]))\s*$)|(^\s*((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:)))(%.+)?\s*$))|(^\s*((?=.{1,255}$)(?=.*[A-Za-z].*)[0-9A-Za-z](?:(?:[0-9A-Za-z]|\b-){0,61}[0-9A-Za-z])?(?:\.[0-9A-Za-z](?:(?:[0-9A-Za-z]|\b-){0,61}[0-9A-Za-z])?)*)\s*$)/;
if(!getInside.test(node)) {
return false;
}
return uriTest.test(stripBrackets.exec(getInside.exec(node)[1])[1]);
}
module.exports = {
isAddress: isAddress,
isTrytes: isTrytes,
isNinesTrytes: isNinesTrytes,
isValue: isValue,
isHash: isHash,
isTransfersArray: isTransfersArray,
isArrayOfHashes: isArrayOfHashes,
isArrayOfTrytes: isArrayOfTrytes,
isArrayOfAttachedTrytes: isArrayOfAttachedTrytes,
isArrayOfTxObjects: isArrayOfTxObjects,
isInputs: isInputs,
isString: isString,
isNum: isNum,
isArray: isArray,
isObject: isObject,
isUri: isUri
}
/***/ }),
/* 13 */
/***/ (function(module, exports, __webpack_require__) {
module.exports = {
curl: __webpack_require__(3),
kerl: __webpack_require__(5),
bundle: __webpack_require__(9),
converter: __webpack_require__(2),
signing: __webpack_require__(11),
oldSigning: __webpack_require__(22),
hmac: __webpack_require__(50),
multisig: __webpack_require__(51),
utils: __webpack_require__(17),
valid: __webpack_require__(16),
add: __webpack_require__(10)
}
/***/ }),
/* 14 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var Hasher = C_lib.Hasher;
var C_algo = C.algo;
// Reusable object
var W = [];
/**
* SHA-1 hash algorithm.
*/
var SHA1 = C_algo.SHA1 = Hasher.extend({
_doReset: function () {
this._hash = new WordArray.init([
0x67452301, 0xefcdab89,
0x98badcfe, 0x10325476,
0xc3d2e1f0
]);
},
_doProcessBlock: function (M, offset) {
// Shortcut
var H = this._hash.words;
// Working variables
var a = H[0];
var b = H[1];
var c = H[2];
var d = H[3];
var e = H[4];
// Computation
for (var i = 0; i < 80; i++) {
if (i < 16) {
W[i] = M[offset + i] | 0;
} else {
var n = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16];
W[i] = (n << 1) | (n >>> 31);
}
var t = ((a << 5) | (a >>> 27)) + e + W[i];
if (i < 20) {
t += ((b & c) | (~b & d)) + 0x5a827999;
} else if (i < 40) {
t += (b ^ c ^ d) + 0x6ed9eba1;
} else if (i < 60) {
t += ((b & c) | (b & d) | (c & d)) - 0x70e44324;
} else /* if (i < 80) */ {
t += (b ^ c ^ d) - 0x359d3e2a;
}
e = d;
d = c;
c = (b << 30) | (b >>> 2);
b = a;
a = t;
}
// Intermediate hash value
H[0] = (H[0] + a) | 0;
H[1] = (H[1] + b) | 0;
H[2] = (H[2] + c) | 0;
H[3] = (H[3] + d) | 0;
H[4] = (H[4] + e) | 0;
},
_doFinalize: function () {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var nBitsTotal = this._nDataBytes * 8;
var nBitsLeft = data.sigBytes * 8;
// Add padding
dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
data.sigBytes = dataWords.length * 4;
// Hash final blocks
this._process();
// Return final computed hash
return this._hash;
},
clone: function () {
var clone = Hasher.clone.call(this);
clone._hash = this._hash.clone();
return clone;
}
});
/**
* Shortcut function to the hasher's object interface.
*
* @param {WordArray|string} message The message to hash.
*
* @return {WordArray} The hash.
*
* @static
*
* @example
*
* var hash = CryptoJS.SHA1('message');
* var hash = CryptoJS.SHA1(wordArray);
*/
C.SHA1 = Hasher._createHelper(SHA1);
/**
* Shortcut function to the HMAC's object interface.
*
* @param {WordArray|string} message The message to hash.
* @param {WordArray|string} key The secret key.
*
* @return {WordArray} The HMAC.
*
* @static
*
* @example
*
* var hmac = CryptoJS.HmacSHA1(message, key);
*/
C.HmacSHA1 = Hasher._createHmacHelper(SHA1);
}());
return CryptoJS.SHA1;
}));
/***/ }),
/* 15 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var Base = C_lib.Base;
var C_enc = C.enc;
var Utf8 = C_enc.Utf8;
var C_algo = C.algo;
/**
* HMAC algorithm.
*/
var HMAC = C_algo.HMAC = Base.extend({
/**
* Initializes a newly created HMAC.
*
* @param {Hasher} hasher The hash algorithm to use.
* @param {WordArray|string} key The secret key.
*
* @example
*
* var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key);
*/
init: function (hasher, key) {
// Init hasher
hasher = this._hasher = new hasher.init();
// Convert string to WordArray, else assume WordArray already
if (typeof key == 'string') {
key = Utf8.parse(key);
}
// Shortcuts
var hasherBlockSize = hasher.blockSize;
var hasherBlockSizeBytes = hasherBlockSize * 4;
// Allow arbitrary length keys
if (key.sigBytes > hasherBlockSizeBytes) {
key = hasher.finalize(key);
}
// Clamp excess bits
key.clamp();
// Clone key for inner and outer pads
var oKey = this._oKey = key.clone();
var iKey = this._iKey = key.clone();
// Shortcuts
var oKeyWords = oKey.words;
var iKeyWords = iKey.words;
// XOR keys with pad constants
for (var i = 0; i < hasherBlockSize; i++) {
oKeyWords[i] ^= 0x5c5c5c5c;
iKeyWords[i] ^= 0x36363636;
}
oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes;
// Set initial values
this.reset();
},
/**
* Resets this HMAC to its initial state.
*
* @example
*
* hmacHasher.reset();
*/
reset: function () {
// Shortcut
var hasher = this._hasher;
// Reset
hasher.reset();
hasher.update(this._iKey);
},
/**
* Updates this HMAC with a message.
*
* @param {WordArray|string} messageUpdate The message to append.
*
* @return {HMAC} This HMAC instance.
*
* @example
*
* hmacHasher.update('message');
* hmacHasher.update(wordArray);
*/
update: function (messageUpdate) {
this._hasher.update(messageUpdate);
// Chainable
return this;
},
/**
* Finalizes the HMAC computation.
* Note that the finalize operation is effectively a destructive, read-once operation.
*
* @param {WordArray|string} messageUpdate (Optional) A final message update.
*
* @return {WordArray} The HMAC.
*
* @example
*
* var hmac = hmacHasher.finalize();
* var hmac = hmacHasher.finalize('message');
* var hmac = hmacHasher.finalize(wordArray);
*/
finalize: function (messageUpdate) {
// Shortcut
var hasher = this._hasher;
// Compute HMAC
var innerHash = hasher.finalize(messageUpdate);
hasher.reset();
var hmac = hasher.finalize(this._oKey.clone().concat(innerHash));
return hmac;
}
});
}());
}));
/***/ }),
/* 16 */
/***/ (function(module, exports) {
module.exports = {
invalidTrytes: function() {
return new Error("Invalid Trytes provided");
},
invalidSeed: function() {
return new Error("Invalid Seed provided");
},
invalidIndex: function() {
return new Error("Invalid Index option provided");
},
invalidSecurity: function() {
return new Error("Invalid Security option provided");
},
invalidChecksum: function(address) {
return new Error("Invalid Checksum supplied for address: " + address)
},
invalidAttachedTrytes: function() {
return new Error("Invalid attached Trytes provided");
},
invalidTransfers: function() {
return new Error("Invalid transfers object");
},
invalidKey: function() {
return new Error("You have provided an invalid key value");
},
invalidTrunkOrBranch: function(hash) {
return new Error("You have provided an invalid hash as a trunk/branch: " + hash);
},
invalidUri: function(uri) {
return new Error("You have provided an invalid URI for your Neighbor: " + uri)
},
notInt: function() {
return new Error("One of your inputs is not an integer");
},
invalidInputs: function() {
return new Error("Invalid inputs provided");
}
}
/***/ }),
/* 17 */
/***/ (function(module, exports, __webpack_require__) {
var inputValidator = __webpack_require__(12);
var Curl = __webpack_require__(3);
var Kerl = __webpack_require__(5);
var Converter = __webpack_require__(2);
var Signing = __webpack_require__(11);
var CryptoJS = __webpack_require__(19);
var ascii = __webpack_require__(23);
var extractJson = __webpack_require__(52);
/**
* Table of IOTA Units based off of the standard System of Units
**/
var unitMap = {
'i' : 1,
'Ki' : 1000,
'Mi' : 1000000,
'Gi' : 1000000000,
'Ti' : 1000000000000,
'Pi' : 1000000000000000 // For the very, very rich
}
/**
* converts IOTA units
*
* @method convertUnits
* @param {string || int || float} value
* @param {string} fromUnit
* @param {string} toUnit
* @returns {integer} converted
**/
var convertUnits = function(value, fromUnit, toUnit) {
// Check if wrong unit provided
if (unitMap[fromUnit] === undefined || unitMap[toUnit] === undefined) {
throw new Error("Invalid unit provided");
}
var afterComma = String(value).match(/\.([\d]+)$/);
if (afterComma && afterComma[1].length > String(unitMap[fromUnit]).length - 1) {
throw new Error("Too many digits after comma");
}
// If not valid value, throw error
if (!inputValidator.isNum(value)) {
throw new Error("Invalid value");
}
var floatValue = parseFloat(value);
var converted = (floatValue * unitMap[fromUnit]) / unitMap[toUnit];
return converted;
}
/**
* Generates the 9-tryte checksum of an address
*
* @method addChecksum
* @param {string | list} inputValue
* @param {int} checksumLength
@ @param {bool} isAddress default is true
* @returns {string | list} address (with checksum)
**/
var addChecksum = function(inputValue, checksumLength, isAddress) {
// checksum length is either user defined, or 9 trytes
var checksumLength = checksumLength || 9;
var isAddress = (isAddress !== false);
// the length of the trytes to be validated
var validationLength = isAddress ? 81 : null;
var isSingleInput = inputValidator.isString( inputValue );
// If only single address, turn it into an array
if ( isSingleInput ) inputValue = new Array( inputValue );
var inputsWithChecksum = [];
inputValue.forEach(function(thisValue) {
// check if correct trytes
if (!inputValidator.isTrytes(thisValue, validationLength)) {
throw new Error("Invalid input");
}
var kerl = new Kerl();
kerl.initialize();
// Address trits
var addressTrits = Converter.trits(thisValue);
// Checksum trits
var checksumTrits = [];
// Absorb address trits
kerl.absorb(addressTrits, 0, addressTrits.length);
// Squeeze checksum trits
kerl.squeeze(checksumTrits, 0, Curl.HASH_LENGTH);
// First 9 trytes as checksum
var checksum = Converter.trytes( checksumTrits ).substring( 81 - checksumLength, 81 );
inputsWithChecksum.push( thisValue + checksum );
});
if (isSingleInput) {
return inputsWithChecksum[ 0 ];
} else {
return inputsWithChecksum;
}
}
/**
* Removes the 9-tryte checksum of an address
*
* @method noChecksum
* @param {string | list} address
* @returns {string | list} address (without checksum)
**/
var noChecksum = function(address) {
var isSingleAddress = inputValidator.isString(address)
// If only single address, turn it into an array
if (isSingleAddress) address = new Array(address);
var addressesWithChecksum = [];
address.forEach(function(thisAddress) {
addressesWithChecksum.push(thisAddress.slice(0, 81))
})
// return either string or the list
if (isSingleAddress) {
return addressesWithChecksum[0];
} else {
return addressesWithChecksum;
}
}
/**
* Validates the checksum of an address
*
* @method isValidChecksum
* @param {string} addressWithChecksum
* @returns {bool}
**/
var isValidChecksum = function(addressWithChecksum) {
var addressWithoutChecksum = noChecksum(addressWithChecksum);
var newChecksum = addChecksum(addressWithoutChecksum);
return newChecksum === addressWithChecksum;
}
/**
* Converts transaction trytes of 2673 trytes into a transaction object
*
* @method transactionObject
* @param {string} trytes
* @returns {String} transactionObject
**/
var transactionObject = function(trytes) {
if (!trytes) return;
// validity check
for (var i = 2279; i < 2295; i++) {
if (trytes.charAt(i) !== "9") {
return null;
}
}
var thisTransaction = {};
var transactionTrits = Converter.trits(trytes);
var hash = [];
var curl = new Curl();
// generate the correct transaction hash
curl.initialize();
curl.absorb(transactionTrits, 0, transactionTrits.length);
curl.squeeze(hash, 0, 243);
thisTransaction.hash = Converter.trytes(hash);
thisTransaction.signatureMessageFragment = trytes.slice(0, 2187);
thisTransaction.address = trytes.slice(2187, 2268);
thisTransaction.value = Converter.value(transactionTrits.slice(6804, 6837));
thisTransaction.obsoleteTag = trytes.slice(2295, 2322);
thisTransaction.timestamp = Converter.value(transactionTrits.slice(6966, 6993));
thisTransaction.currentIndex = Converter.value(transactionTrits.slice(6993, 7020));
thisTransaction.lastIndex = Converter.value(transactionTrits.slice(7020, 7047));
thisTransaction.bundle = trytes.slice(2349, 2430);
thisTransaction.trunkTransaction = trytes.slice(2430, 2511);
thisTransaction.branchTransaction = trytes.slice(2511, 2592);
thisTransaction.tag = trytes.slice(2592, 2619);
thisTransaction.attachmentTimestamp = Converter.value(transactionTrits.slice(7857, 7884));
thisTransaction.attachmentTimestampLowerBound = Converter.value(transactionTrits.slice(7884, 7911));
thisTransaction.attachmentTimestampUpperBound = Converter.value(transactionTrits.slice(7911, 7938));
thisTransaction.nonce = trytes.slice(2646, 2673);
return thisTransaction;
}
/**
* Converts a transaction object into trytes
*
* @method transactionTrytes
* @param {object} transactionTrytes
* @returns {String} trytes
**/
var transactionTrytes = function(transaction) {
var valueTrits = Converter.trits(transaction.value);
while (valueTrits.length < 81) {
valueTrits[valueTrits.length] = 0;
}
var timestampTrits = Converter.trits(transaction.timestamp);
while (timestampTrits.length < 27) {
timestampTrits[timestampTrits.length] = 0;
}
var currentIndexTrits = Converter.trits(transaction.currentIndex);
while (currentIndexTrits.length < 27) {
currentIndexTrits[currentIndexTrits.length] = 0;
}
var lastIndexTrits = Converter.trits(transaction.lastIndex);
while (lastIndexTrits.length < 27) {
lastIndexTrits[lastIndexTrits.length] = 0;
}
var attachmentTimestampTrits = Converter.trits(transaction.attachmentTimestamp || 0);
while (attachmentTimestampTrits.length < 27) {
attachmentTimestampTrits[attachmentTimestampTrits.length] = 0;
}
var attachmentTimestampLowerBoundTrits = Converter.trits(transaction.attachmentTimestampLowerBound || 0);
while (attachmentTimestampLowerBoundTrits.length < 27) {
attachmentTimestampLowerBoundTrits[attachmentTimestampLowerBoundTrits.length] = 0;
}
var attachmentTimestampUpperBoundTrits = Converter.trits(transaction.attachmentTimestampUpperBound || 0);
while (attachmentTimestampUpperBoundTrits.length < 27) {
attachmentTimestampUpperBoundTrits[attachmentTimestampUpperBoundTrits.length] = 0;
}
transaction.tag = transaction.tag || transaction.obsoleteTag;
return transaction.signatureMessageFragment
+ transaction.address
+ Converter.trytes(valueTrits)
+ transaction.obsoleteTag
+ Converter.trytes(timestampTrits)
+ Converter.trytes(currentIndexTrits)
+ Converter.trytes(lastIndexTrits)
+ transaction.bundle
+ transaction.trunkTransaction
+ transaction.branchTransaction
+ transaction.tag
+ Converter.trytes(attachmentTimestampTrits)
+ Converter.trytes(attachmentTimestampLowerBoundTrits)
+ Converter.trytes(attachmentTimestampUpperBoundTrits)
+ transaction.nonce;
}
/**
* Categorizes a list of transfers between sent and received
*
* @method categorizeTransfers
* @param {object} transfers Transfers (bundles)
* @param {list} addresses List of addresses that belong to the user
* @returns {String} trytes
**/
var categorizeTransfers = function(transfers, addresses) {
var categorized = {
'sent' : [],
'received' : []
}
// Iterate over all bundles and sort them between incoming and outgoing transfers
transfers.forEach(function(bundle) {
var spentAlreadyAdded = false;
// Iterate over every bundle entry
bundle.forEach(function(bundleEntry, bundleIndex) {
// If bundle address in the list of addresses associated with the seed
// add the bundle to the
if (addresses.indexOf(bundleEntry.address) > -1) {
// Check if it's a remainder address
var isRemainder = (bundleEntry.currentIndex === bundleEntry.lastIndex) && bundleEntry.lastIndex !== 0;
// check if sent transaction
if (bundleEntry.value < 0 && !spentAlreadyAdded && !isRemainder) {
categorized.sent.push(bundle);
// too make sure we do not add transactions twice
spentAlreadyAdded = true;
}
// check if received transaction, or 0 value (message)
// also make sure that this is not a 2nd tx for spent inputs
else if (bundleEntry.value >= 0 && !spentAlreadyAdded && !isRemainder) {
categorized.received.push(bundle);
}
}
})
})
return categorized;
}
/**
* Validates the signatures
*
* @method validateSignatures
* @param {array} signedBundle
* @param {string} inputAddress
* @returns {bool}
**/
var validateSignatures = function(signedBundle, inputAddress) {
var bundleHash;
var signatureFragments = [];
for (var i = 0; i < signedBundle.length; i++) {
if (signedBundle[i].address === inputAddress) {
bundleHash = signedBundle[i].bundle;
// if we reached remainder bundle
if (inputValidator.isNinesTrytes(signedBundle[i].signatureMessageFragment)) {
break;
}
signatureFragments.push(signedBundle[i].signatureMessageFragment)
}
}
if (!bundleHash) {
return false;
}
return Signing.validateSignatures(inputAddress, signatureFragments, bundleHash);
}
/**
* Checks is a Bundle is valid. Validates signatures and overall structure. Has to be tail tx first.
*
* @method isValidBundle
* @param {array} bundle
* @returns {bool} valid
**/
var isBundle = function(bundle) {
// If not correct bundle
if (!inputValidator.isArrayOfTxObjects(bundle)) return false;
var totalSum = 0, lastIndex, bundleHash = bundle[0].bundle;
// Prepare to absorb txs and get bundleHash
var bundleFromTxs = [];
var kerl = new Kerl();
kerl.initialize();
// Prepare for signature validation
var signaturesToValidate = [];
bundle.forEach(function(bundleTx, index) {
totalSum += bundleTx.value;
// currentIndex has to be equal to the index in the array
if (bundleTx.currentIndex !== index) return false;
// Get the transaction trytes
var thisTxTrytes = transactionTrytes(bundleTx);
// Absorb bundle hash + value + timestamp + lastIndex + currentIndex trytes.
var thisTxTrits = Converter.trits(thisTxTrytes.slice(2187, 2187 + 162));
kerl.absorb(thisTxTrits, 0, thisTxTrits.length);
// Check if input transaction
if (bundleTx.value < 0) {
var thisAddress = bundleTx.address;
var newSignatureToValidate = {
'address': thisAddress,
'signatureFragments': Array(bundleTx.signatureMessageFragment)
}
// Find the subsequent txs with the remaining signature fragment
for (var i = index; i < bundle.length - 1; i++) {
var newBundleTx = bundle[i + 1];
// Check if new tx is part of the signature fragment
if (newBundleTx.address === thisAddress && newBundleTx.value === 0) {
newSignatureToValidate.signatureFragments.push(newBundleTx.signatureMessageFragment);
}
}
signaturesToValidate.push(newSignatureToValidate);
}
});
// Check for total sum, if not equal 0 return error
if (totalSum !== 0) return false;
// get the bundle hash from the bundle transactions
kerl.squeeze(bundleFromTxs, 0, Curl.HASH_LENGTH);
var bundleFromTxs = Converter.trytes(bundleFromTxs);
// Check if bundle hash is the same as returned by tx object
if (bundleFromTxs !== bundleHash) return false;
// Last tx in the bundle should have currentIndex === lastIndex
if (bundle[bundle.length - 1].currentIndex !== bundle[bundle.length - 1].lastIndex) return false;
// Validate the signatures
for (var i = 0; i < signaturesToValidate.length; i++) {
var isValidSignature = Signing.validateSignatures(signaturesToValidate[i].address, signaturesToValidate[i].signatureFragments, bundleHash);
if (!isValidSignature) return false;
}
return true;
}
module.exports = {
inputValidator : inputValidator,
convertUnits : convertUnits,
addChecksum : addChecksum,
noChecksum : noChecksum,
isValidChecksum : isValidChecksum,
transactionObject : transactionObject,
transactionTrytes : transactionTrytes,
categorizeTransfers : categorizeTransfers,
toTrytes : ascii.toTrytes,
fromTrytes : ascii.fromTrytes,
extractJson : extractJson,
validateSignatures : validateSignatures,
isBundle : isBundle
}
/***/ }),
/* 18 */
/***/ (function(module, exports, __webpack_require__) {
const IOTACrypto = __webpack_require__(13);
const constants = __webpack_require__(24);
function getDigest(seed, index, security) {
return {
'digest': IOTACrypto.multisig.getDigest(seed, index, security),
'security': security,
'index': index
};
}
function composeAddress(digests) {
const multisig = initializeAddress(digests);
return finalizeAddress(multisig);
}
function initializeAddress(digests) {
const address = new IOTACrypto.multisig.address();
const multisig = {
'address': address,
'securitySum': 0,
'children': [],
'bundles': [],
}
if (digests) {
return absorbAddressDigests(multisig, digests);
}
return multisig;
}
function absorbAddressDigests(multisig, digests) {
const toAbsorb = digests.map(digest => digest.digest);
multisig.address = multisig.address.absorb(toAbsorb);
multisig.securitySum += digests.reduce((sum, digest) => sum + digest.security, 0);
return multisig;
}
function finalizeAddress(multisig) {
if (multisig.securitySum <= 0) {
throw new Error('Could not finalize address');
}
multisig.address = multisig.address.finalize();
return multisig;
}
function initTreeWithCount(flash, txCount) {
return initializeTree(flash, Math.ceil(Math.log(txCount)/Math.log(constants.MAX_USES)))
}
function initializeTree(flash, depth) {
const root = initializeAddress();
root.index = flash.state.index++;
let node = root;
for(let i = depth; i-- > 0;) {
node.children.push(initializeAddress());
node.index = flash.state.index++;
node = node.children[0];
}
return root
}
function addBranch(root, start, branch) {
let done = false;
let node = root;
for(node = root; node.address != start.address && node.children.length != 0; node = node.children[node.children.length - 1]) {}
node.children.push(branch);
}
function updateLeafToRoot(root) {
const multisigs = getLastBranch(root);
let i;
// get the first one that doesn't pass all the way down
for(i = 0; i < multisigs.length-1; i++){
if(!multisigs[i].bundles.find(bundle => bundle.find(tx => tx.value > 0 && tx.address == multisigs[i+1].address))) {
return {
multisig: multisigs[i],
generate: 0
}
}
}
// get the first from the bottom that has less than 3 usages
let toGenerate = 0;
for(i = multisigs.length; i-- > 0 && multisigs[i].bundles.length == constants.MAX_USES;) {
toGenerate++;
}
let node = multisigs[i];
return {
multisig: multisigs[i],
generate: toGenerate
}
}
function getLastBranch(root) {
let multisigs = [];
let node = root
multisigs.push(node)
while (node.children.length != 0) {
node = node.children[node.children.length - 1]
multisigs.push(node);
}
return multisigs;
}
function getMinimumBranch(root) {
let multisigs = [];
let node = root
multisigs.push(node)
while (node.children.length != 0 && node.bundles.length == constants.MAX_USES) {
node = node.children[node.children.length - 1]
multisigs.push(node);
}
return multisigs;
}
function getMultisig(knot, addy) {
if(knot.address == addy) {
return knot;
}
for(const child of knot.children.reverse()) {
const multisig = getMultisig(child, addy);
if(multisig) {
return multisig;
}
}
}
module.exports = {
getDigest : getDigest,
composeAddress : composeAddress,
initializeAddress : initializeAddress,
initializeTree : initializeTree,
initTreeWithCount : initTreeWithCount,
absorbAddressDigests : absorbAddressDigests,
finalizeAddress : finalizeAddress,
updateLeafToRoot : updateLeafToRoot,
getLastBranch : getLastBranch,
getMinimumBranch : getMinimumBranch,
getMultisig : getMultisig,
};
/***/ }),
/* 19 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(8), __webpack_require__(26), __webpack_require__(27), __webpack_require__(6), __webpack_require__(7), __webpack_require__(14), __webpack_require__(20), __webpack_require__(28), __webpack_require__(21), __webpack_require__(29), __webpack_require__(30), __webpack_require__(31), __webpack_require__(15), __webpack_require__(32), __webpack_require__(4), __webpack_require__(1), __webpack_require__(33), __webpack_require__(34), __webpack_require__(35), __webpack_require__(36), __webpack_require__(37), __webpack_require__(38), __webpack_require__(39), __webpack_require__(40), __webpack_require__(41), __webpack_require__(42), __webpack_require__(43), __webpack_require__(44), __webpack_require__(45), __webpack_require__(46), __webpack_require__(47), __webpack_require__(48));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./x64-core", "./lib-typedarrays", "./enc-utf16", "./enc-base64", "./md5", "./sha1", "./sha256", "./sha224", "./sha512", "./sha384", "./sha3", "./ripemd160", "./hmac", "./pbkdf2", "./evpkdf", "./cipher-core", "./mode-cfb", "./mode-ctr", "./mode-ctr-gladman", "./mode-ofb", "./mode-ecb", "./pad-ansix923", "./pad-iso10126", "./pad-iso97971", "./pad-zeropadding", "./pad-nopadding", "./format-hex", "./aes", "./tripledes", "./rc4", "./rabbit", "./rabbit-legacy"], factory);
}
else {
// Global (browser)
root.CryptoJS = factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
return CryptoJS;
}));
/***/ }),
/* 20 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function (Math) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var Hasher = C_lib.Hasher;
var C_algo = C.algo;
// Initialization and round constants tables
var H = [];
var K = [];
// Compute constants
(function () {
function isPrime(n) {
var sqrtN = Math.sqrt(n);
for (var factor = 2; factor <= sqrtN; factor++) {
if (!(n % factor)) {
return false;
}
}
return true;
}
function getFractionalBits(n) {
return ((n - (n | 0)) * 0x100000000) | 0;
}
var n = 2;
var nPrime = 0;
while (nPrime < 64) {
if (isPrime(n)) {
if (nPrime < 8) {
H[nPrime] = getFractionalBits(Math.pow(n, 1 / 2));
}
K[nPrime] = getFractionalBits(Math.pow(n, 1 / 3));
nPrime++;
}
n++;
}
}());
// Reusable object
var W = [];
/**
* SHA-256 hash algorithm.
*/
var SHA256 = C_algo.SHA256 = Hasher.extend({
_doReset: function () {
this._hash = new WordArray.init(H.slice(0));
},
_doProcessBlock: function (M, offset) {
// Shortcut
var H = this._hash.words;
// Working variables
var a = H[0];
var b = H[1];
var c = H[2];
var d = H[3];
var e = H[4];
var f = H[5];
var g = H[6];
var h = H[7];
// Computation
for (var i = 0; i < 64; i++) {
if (i < 16) {
W[i] = M[offset + i] | 0;
} else {
var gamma0x = W[i - 15];
var gamma0 = ((gamma0x << 25) | (gamma0x >>> 7)) ^
((gamma0x << 14) | (gamma0x >>> 18)) ^
(gamma0x >>> 3);
var gamma1x = W[i - 2];
var gamma1 = ((gamma1x << 15) | (gamma1x >>> 17)) ^
((gamma1x << 13) | (gamma1x >>> 19)) ^
(gamma1x >>> 10);
W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16];
}
var ch = (e & f) ^ (~e & g);
var maj = (a & b) ^ (a & c) ^ (b & c);
var sigma0 = ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22));
var sigma1 = ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7) | (e >>> 25));
var t1 = h + sigma1 + ch + K[i] + W[i];
var t2 = sigma0 + maj;
h = g;
g = f;
f = e;
e = (d + t1) | 0;
d = c;
c = b;
b = a;
a = (t1 + t2) | 0;
}
// Intermediate hash value
H[0] = (H[0] + a) | 0;
H[1] = (H[1] + b) | 0;
H[2] = (H[2] + c) | 0;
H[3] = (H[3] + d) | 0;
H[4] = (H[4] + e) | 0;
H[5] = (H[5] + f) | 0;
H[6] = (H[6] + g) | 0;
H[7] = (H[7] + h) | 0;
},
_doFinalize: function () {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var nBitsTotal = this._nDataBytes * 8;
var nBitsLeft = data.sigBytes * 8;
// Add padding
dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
data.sigBytes = dataWords.length * 4;
// Hash final blocks
this._process();
// Return final computed hash
return this._hash;
},
clone: function () {
var clone = Hasher.clone.call(this);
clone._hash = this._hash.clone();
return clone;
}
});
/**
* Shortcut function to the hasher's object interface.
*
* @param {WordArray|string} message The message to hash.
*
* @return {WordArray} The hash.
*
* @static
*
* @example
*
* var hash = CryptoJS.SHA256('message');
* var hash = CryptoJS.SHA256(wordArray);
*/
C.SHA256 = Hasher._createHelper(SHA256);
/**
* Shortcut function to the HMAC's object interface.
*
* @param {WordArray|string} message The message to hash.
* @param {WordArray|string} key The secret key.
*
* @return {WordArray} The HMAC.
*
* @static
*
* @example
*
* var hmac = CryptoJS.HmacSHA256(message, key);
*/
C.HmacSHA256 = Hasher._createHmacHelper(SHA256);
}(Math));
return CryptoJS.SHA256;
}));
/***/ }),
/* 21 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(8));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./x64-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var Hasher = C_lib.Hasher;
var C_x64 = C.x64;
var X64Word = C_x64.Word;
var X64WordArray = C_x64.WordArray;
var C_algo = C.algo;
function X64Word_create() {
return X64Word.create.apply(X64Word, arguments);
}
// Constants
var K = [
X64Word_create(0x428a2f98, 0xd728ae22), X64Word_create(0x71374491, 0x23ef65cd),
X64Word_create(0xb5c0fbcf, 0xec4d3b2f), X64Word_create(0xe9b5dba5, 0x8189dbbc),
X64Word_create(0x3956c25b, 0xf348b538), X64Word_create(0x59f111f1, 0xb605d019),
X64Word_create(0x923f82a4, 0xaf194f9b), X64Word_create(0xab1c5ed5, 0xda6d8118),
X64Word_create(0xd807aa98, 0xa3030242), X64Word_create(0x12835b01, 0x45706fbe),
X64Word_create(0x243185be, 0x4ee4b28c), X64Word_create(0x550c7dc3, 0xd5ffb4e2),
X64Word_create(0x72be5d74, 0xf27b896f), X64Word_create(0x80deb1fe, 0x3b1696b1),
X64Word_create(0x9bdc06a7, 0x25c71235), X64Word_create(0xc19bf174, 0xcf692694),
X64Word_create(0xe49b69c1, 0x9ef14ad2), X64Word_create(0xefbe4786, 0x384f25e3),
X64Word_create(0x0fc19dc6, 0x8b8cd5b5), X64Word_create(0x240ca1cc, 0x77ac9c65),
X64Word_create(0x2de92c6f, 0x592b0275), X64Word_create(0x4a7484aa, 0x6ea6e483),
X64Word_create(0x5cb0a9dc, 0xbd41fbd4), X64Word_create(0x76f988da, 0x831153b5),
X64Word_create(0x983e5152, 0xee66dfab), X64Word_create(0xa831c66d, 0x2db43210),
X64Word_create(0xb00327c8, 0x98fb213f), X64Word_create(0xbf597fc7, 0xbeef0ee4),
X64Word_create(0xc6e00bf3, 0x3da88fc2), X64Word_create(0xd5a79147, 0x930aa725),
X64Word_create(0x06ca6351, 0xe003826f), X64Word_create(0x14292967, 0x0a0e6e70),
X64Word_create(0x27b70a85, 0x46d22ffc), X64Word_create(0x2e1b2138, 0x5c26c926),
X64Word_create(0x4d2c6dfc, 0x5ac42aed), X64Word_create(0x53380d13, 0x9d95b3df),
X64Word_create(0x650a7354, 0x8baf63de), X64Word_create(0x766a0abb, 0x3c77b2a8),
X64Word_create(0x81c2c92e, 0x47edaee6), X64Word_create(0x92722c85, 0x1482353b),
X64Word_create(0xa2bfe8a1, 0x4cf10364), X64Word_create(0xa81a664b, 0xbc423001),
X64Word_create(0xc24b8b70, 0xd0f89791), X64Word_create(0xc76c51a3, 0x0654be30),
X64Word_create(0xd192e819, 0xd6ef5218), X64Word_create(0xd6990624, 0x5565a910),
X64Word_create(0xf40e3585, 0x5771202a), X64Word_create(0x106aa070, 0x32bbd1b8),
X64Word_create(0x19a4c116, 0xb8d2d0c8), X64Word_create(0x1e376c08, 0x5141ab53),
X64Word_create(0x2748774c, 0xdf8eeb99), X64Word_create(0x34b0bcb5, 0xe19b48a8),
X64Word_create(0x391c0cb3, 0xc5c95a63), X64Word_create(0x4ed8aa4a, 0xe3418acb),
X64Word_create(0x5b9cca4f, 0x7763e373), X64Word_create(0x682e6ff3, 0xd6b2b8a3),
X64Word_create(0x748f82ee, 0x5defb2fc), X64Word_create(0x78a5636f, 0x43172f60),
X64Word_create(0x84c87814, 0xa1f0ab72), X64Word_create(0x8cc70208, 0x1a6439ec),
X64Word_create(0x90befffa, 0x23631e28), X64Word_create(0xa4506ceb, 0xde82bde9),
X64Word_create(0xbef9a3f7, 0xb2c67915), X64Word_create(0xc67178f2, 0xe372532b),
X64Word_create(0xca273ece, 0xea26619c), X64Word_create(0xd186b8c7, 0x21c0c207),
X64Word_create(0xeada7dd6, 0xcde0eb1e), X64Word_create(0xf57d4f7f, 0xee6ed178),
X64Word_create(0x06f067aa, 0x72176fba), X64Word_create(0x0a637dc5, 0xa2c898a6),
X64Word_create(0x113f9804, 0xbef90dae), X64Word_create(0x1b710b35, 0x131c471b),
X64Word_create(0x28db77f5, 0x23047d84), X64Word_create(0x32caab7b, 0x40c72493),
X64Word_create(0x3c9ebe0a, 0x15c9bebc), X64Word_create(0x431d67c4, 0x9c100d4c),
X64Word_create(0x4cc5d4be, 0xcb3e42b6), X64Word_create(0x597f299c, 0xfc657e2a),
X64Word_create(0x5fcb6fab, 0x3ad6faec), X64Word_create(0x6c44198c, 0x4a475817)
];
// Reusable objects
var W = [];
(function () {
for (var i = 0; i < 80; i++) {
W[i] = X64Word_create();
}
}());
/**
* SHA-512 hash algorithm.
*/
var SHA512 = C_algo.SHA512 = Hasher.extend({
_doReset: function () {
this._hash = new X64WordArray.init([
new X64Word.init(0x6a09e667, 0xf3bcc908), new X64Word.init(0xbb67ae85, 0x84caa73b),
new X64Word.init(0x3c6ef372, 0xfe94f82b), new X64Word.init(0xa54ff53a, 0x5f1d36f1),
new X64Word.init(0x510e527f, 0xade682d1), new X64Word.init(0x9b05688c, 0x2b3e6c1f),
new X64Word.init(0x1f83d9ab, 0xfb41bd6b), new X64Word.init(0x5be0cd19, 0x137e2179)
]);
},
_doProcessBlock: function (M, offset) {
// Shortcuts
var H = this._hash.words;
var H0 = H[0];
var H1 = H[1];
var H2 = H[2];
var H3 = H[3];
var H4 = H[4];
var H5 = H[5];
var H6 = H[6];
var H7 = H[7];
var H0h = H0.high;
var H0l = H0.low;
var H1h = H1.high;
var H1l = H1.low;
var H2h = H2.high;
var H2l = H2.low;
var H3h = H3.high;
var H3l = H3.low;
var H4h = H4.high;
var H4l = H4.low;
var H5h = H5.high;
var H5l = H5.low;
var H6h = H6.high;
var H6l = H6.low;
var H7h = H7.high;
var H7l = H7.low;
// Working variables
var ah = H0h;
var al = H0l;
var bh = H1h;
var bl = H1l;
var ch = H2h;
var cl = H2l;
var dh = H3h;
var dl = H3l;
var eh = H4h;
var el = H4l;
var fh = H5h;
var fl = H5l;
var gh = H6h;
var gl = H6l;
var hh = H7h;
var hl = H7l;
// Rounds
for (var i = 0; i < 80; i++) {
// Shortcut
var Wi = W[i];
// Extend message
if (i < 16) {
var Wih = Wi.high = M[offset + i * 2] | 0;
var Wil = Wi.low = M[offset + i * 2 + 1] | 0;
} else {
// Gamma0
var gamma0x = W[i - 15];
var gamma0xh = gamma0x.high;
var gamma0xl = gamma0x.low;
var gamma0h = ((gamma0xh >>> 1) | (gamma0xl << 31)) ^ ((gamma0xh >>> 8) | (gamma0xl << 24)) ^ (gamma0xh >>> 7);
var gamma0l = ((gamma0xl >>> 1) | (gamma0xh << 31)) ^ ((gamma0xl >>> 8) | (gamma0xh << 24)) ^ ((gamma0xl >>> 7) | (gamma0xh << 25));
// Gamma1
var gamma1x = W[i - 2];
var gamma1xh = gamma1x.high;
var gamma1xl = gamma1x.low;
var gamma1h = ((gamma1xh >>> 19) | (gamma1xl << 13)) ^ ((gamma1xh << 3) | (gamma1xl >>> 29)) ^ (gamma1xh >>> 6);
var gamma1l = ((gamma1xl >>> 19) | (gamma1xh << 13)) ^ ((gamma1xl << 3) | (gamma1xh >>> 29)) ^ ((gamma1xl >>> 6) | (gamma1xh << 26));
// W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16]
var Wi7 = W[i - 7];
var Wi7h = Wi7.high;
var Wi7l = Wi7.low;
var Wi16 = W[i - 16];
var Wi16h = Wi16.high;
var Wi16l = Wi16.low;
var Wil = gamma0l + Wi7l;
var Wih = gamma0h + Wi7h + ((Wil >>> 0) < (gamma0l >>> 0) ? 1 : 0);
var Wil = Wil + gamma1l;
var Wih = Wih + gamma1h + ((Wil >>> 0) < (gamma1l >>> 0) ? 1 : 0);
var Wil = Wil + Wi16l;
var Wih = Wih + Wi16h + ((Wil >>> 0) < (Wi16l >>> 0) ? 1 : 0);
Wi.high = Wih;
Wi.low = Wil;
}
var chh = (eh & fh) ^ (~eh & gh);
var chl = (el & fl) ^ (~el & gl);
var majh = (ah & bh) ^ (ah & ch) ^ (bh & ch);
var majl = (al & bl) ^ (al & cl) ^ (bl & cl);
var sigma0h = ((ah >>> 28) | (al << 4)) ^ ((ah << 30) | (al >>> 2)) ^ ((ah << 25) | (al >>> 7));
var sigma0l = ((al >>> 28) | (ah << 4)) ^ ((al << 30) | (ah >>> 2)) ^ ((al << 25) | (ah >>> 7));
var sigma1h = ((eh >>> 14) | (el << 18)) ^ ((eh >>> 18) | (el << 14)) ^ ((eh << 23) | (el >>> 9));
var sigma1l = ((el >>> 14) | (eh << 18)) ^ ((el >>> 18) | (eh << 14)) ^ ((el << 23) | (eh >>> 9));
// t1 = h + sigma1 + ch + K[i] + W[i]
var Ki = K[i];
var Kih = Ki.high;
var Kil = Ki.low;
var t1l = hl + sigma1l;
var t1h = hh + sigma1h + ((t1l >>> 0) < (hl >>> 0) ? 1 : 0);
var t1l = t1l + chl;
var t1h = t1h + chh + ((t1l >>> 0) < (chl >>> 0) ? 1 : 0);
var t1l = t1l + Kil;
var t1h = t1h + Kih + ((t1l >>> 0) < (Kil >>> 0) ? 1 : 0);
var t1l = t1l + Wil;
var t1h = t1h + Wih + ((t1l >>> 0) < (Wil >>> 0) ? 1 : 0);
// t2 = sigma0 + maj
var t2l = sigma0l + majl;
var t2h = sigma0h + majh + ((t2l >>> 0) < (sigma0l >>> 0) ? 1 : 0);
// Update working variables
hh = gh;
hl = gl;
gh = fh;
gl = fl;
fh = eh;
fl = el;
el = (dl + t1l) | 0;
eh = (dh + t1h + ((el >>> 0) < (dl >>> 0) ? 1 : 0)) | 0;
dh = ch;
dl = cl;
ch = bh;
cl = bl;
bh = ah;
bl = al;
al = (t1l + t2l) | 0;
ah = (t1h + t2h + ((al >>> 0) < (t1l >>> 0) ? 1 : 0)) | 0;
}
// Intermediate hash value
H0l = H0.low = (H0l + al);
H0.high = (H0h + ah + ((H0l >>> 0) < (al >>> 0) ? 1 : 0));
H1l = H1.low = (H1l + bl);
H1.high = (H1h + bh + ((H1l >>> 0) < (bl >>> 0) ? 1 : 0));
H2l = H2.low = (H2l + cl);
H2.high = (H2h + ch + ((H2l >>> 0) < (cl >>> 0) ? 1 : 0));
H3l = H3.low = (H3l + dl);
H3.high = (H3h + dh + ((H3l >>> 0) < (dl >>> 0) ? 1 : 0));
H4l = H4.low = (H4l + el);
H4.high = (H4h + eh + ((H4l >>> 0) < (el >>> 0) ? 1 : 0));
H5l = H5.low = (H5l + fl);
H5.high = (H5h + fh + ((H5l >>> 0) < (fl >>> 0) ? 1 : 0));
H6l = H6.low = (H6l + gl);
H6.high = (H6h + gh + ((H6l >>> 0) < (gl >>> 0) ? 1 : 0));
H7l = H7.low = (H7l + hl);
H7.high = (H7h + hh + ((H7l >>> 0) < (hl >>> 0) ? 1 : 0));
},
_doFinalize: function () {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var nBitsTotal = this._nDataBytes * 8;
var nBitsLeft = data.sigBytes * 8;
// Add padding
dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
dataWords[(((nBitsLeft + 128) >>> 10) << 5) + 30] = Math.floor(nBitsTotal / 0x100000000);
dataWords[(((nBitsLeft + 128) >>> 10) << 5) + 31] = nBitsTotal;
data.sigBytes = dataWords.length * 4;
// Hash final blocks
this._process();
// Convert hash to 32-bit word array before returning
var hash = this._hash.toX32();
// Return final computed hash
return hash;
},
clone: function () {
var clone = Hasher.clone.call(this);
clone._hash = this._hash.clone();
return clone;
},
blockSize: 1024/32
});
/**
* Shortcut function to the hasher's object interface.
*
* @param {WordArray|string} message The message to hash.
*
* @return {WordArray} The hash.
*
* @static
*
* @example
*
* var hash = CryptoJS.SHA512('message');
* var hash = CryptoJS.SHA512(wordArray);
*/
C.SHA512 = Hasher._createHelper(SHA512);
/**
* Shortcut function to the HMAC's object interface.
*
* @param {WordArray|string} message The message to hash.
* @param {WordArray|string} key The secret key.
*
* @return {WordArray} The HMAC.
*
* @static
*
* @example
*
* var hmac = CryptoJS.HmacSHA512(message, key);
*/
C.HmacSHA512 = Hasher._createHmacHelper(SHA512);
}());
return CryptoJS.SHA512;
}));
/***/ }),
/* 22 */
/***/ (function(module, exports, __webpack_require__) {
var Curl = __webpack_require__(3);
var Converter = __webpack_require__(2);
var Bundle = __webpack_require__(9);
var add = __webpack_require__(10);
/**
* Signing related functions
*
**/
var key = function(seed, index, length) {
while ((seed.length % 243) !== 0) {
seed.push(0);
}
var indexTrits = Converter.fromValue( index );
var subseed = add( seed.slice( ), indexTrits );
var curl = new Curl( );
curl.initialize( );
curl.absorb(subseed, 0, subseed.length);
curl.squeeze(subseed, 0, subseed.length);
curl.initialize( );
curl.absorb(subseed, 0, subseed.length);
var key = [], offset = 0, buffer = [];
while (length-- > 0) {
for (var i = 0; i < 27; i++) {
curl.squeeze(buffer, 0, subseed.length);
for (var j = 0; j < 243; j++) {
key[offset++] = buffer[j];
}
}
}
return key;
}
/**
*
*
**/
var digests = function(key) {
var digests = [], buffer = [];
for (var i = 0; i < Math.floor(key.length / 6561); i++) {
var keyFragment = key.slice(i * 6561, (i + 1) * 6561);
for (var j = 0; j < 27; j++) {
buffer = keyFragment.slice(j * 243, (j + 1) * 243);
for (var k = 0; k < 26; k++) {
var kCurl = new Curl();
kCurl.initialize();
kCurl.absorb(buffer, 0, buffer.length);
kCurl.squeeze(buffer, 0, Curl.HASH_LENGTH);
}
for (var k = 0; k < 243; k++) {
keyFragment[j * 243 + k] = buffer[k];
}
}
var curl = new Curl()
curl.initialize();
curl.absorb(keyFragment, 0, keyFragment.length);
curl.squeeze(buffer, 0, Curl.HASH_LENGTH);
for (var j = 0; j < 243; j++) {
digests[i * 243 + j] = buffer[j];
}
}
return digests;
}
/**
*
*
**/
var address = function(digests) {
var addressTrits = [];
var curl = new Curl();
curl.initialize();
curl.absorb(digests, 0, digests.length);
curl.squeeze(addressTrits, 0, Curl.HASH_LENGTH);
return addressTrits;
}
/**
*
*
**/
var digest = function(normalizedBundleFragment, signatureFragment) {
var buffer = []
var curl = new Curl();
curl.initialize();
for (var i = 0; i< 27; i++) {
buffer = signatureFragment.slice(i * 243, (i + 1) * 243);
for (var j = normalizedBundleFragment[i] + 13; j-- > 0; ) {
var jCurl = new Curl();
jCurl.initialize();
jCurl.absorb(buffer, 0, buffer.length);
jCurl.squeeze(buffer, 0, Curl.HASH_LENGTH);
}
curl.absorb(buffer, 0, buffer.length);
}
curl.squeeze(buffer, 0, Curl.HASH_LENGTH);
return buffer;
}
/**
*
*
**/
var signatureFragment = function(normalizedBundleFragment, keyFragment) {
var signatureFragment = keyFragment.slice(), hash = [];
var curl = new Curl();
for (var i = 0; i < 27; i++) {
hash = signatureFragment.slice(i * 243, (i + 1) * 243);
for (var j = 0; j < 13 - normalizedBundleFragment[i]; j++) {
curl.initialize();
curl.absorb(hash, 0, hash.length);
curl.squeeze(hash, 0, Curl.HASH_LENGTH);
}
for (var j = 0; j < 243; j++) {
signatureFragment[i * 243 + j] = hash[j];
}
}
return signatureFragment;
}
/**
*
*
**/
var validateSignatures = function(expectedAddress, signatureFragments, bundleHash) {
var self = this;
var bundle = new Bundle();
var normalizedBundleFragments = [];
var normalizedBundleHash = bundle.normalizedBundle(bundleHash);
// Split hash into 3 fragments
for (var i = 0; i < 3; i++) {
normalizedBundleFragments[i] = normalizedBundleHash.slice(i * 27, (i + 1) * 27);
}
// Get digests
var digests = [];
for (var i = 0; i < signatureFragments.length; i++) {
var digestBuffer = digest(normalizedBundleFragments[i % 3], Converter.trits(signatureFragments[i]));
for (var j = 0; j < 243; j++) {
digests[i * 243 + j] = digestBuffer[j]
}
}
var address = Converter.trytes(self.address(digests));
return (expectedAddress === address);
}
module.exports = {
key : key,
digests : digests,
address : address,
digest : digest,
signatureFragment : signatureFragment,
validateSignatures : validateSignatures
}
/***/ }),
/* 23 */
/***/ (function(module, exports) {
//
// Conversion of ascii encoded bytes to trytes.
// Input is a string (can be stringified JSON object), return value is Trytes
//
// How the conversion works:
// 2 Trytes === 1 Byte
// There are a total of 27 different tryte values: 9ABCDEFGHIJKLMNOPQRSTUVWXYZ
//
// 1. We get the decimal value of an individual ASCII character
// 2. From the decimal value, we then derive the two tryte values by basically calculating the tryte equivalent (e.g. 100 === 19 + 3 * 27)
// a. The first tryte value is the decimal value modulo 27 (27 trytes)
// b. The second value is the remainder (decimal value - first value), divided by 27
// 3. The two values returned from Step 2. are then input as indices into the available values list ('9ABCDEFGHIJKLMNOPQRSTUVWXYZ') to get the correct tryte value
//
// EXAMPLES
// Lets say we want to convert the ASCII character "Z".
// 1. 'Z' has a decimal value of 90.
// 2. 90 can be represented as 9 + 3 * 27. To make it simpler:
// a. First value: 90 modulo 27 is 9. This is now our first value
// b. Second value: (90 - 9) / 27 is 3. This is our second value.
// 3. Our two values are now 9 and 3. To get the tryte value now we simply insert it as indices into '9ABCDEFGHIJKLMNOPQRSTUVWXYZ'
// a. The first tryte value is '9ABCDEFGHIJKLMNOPQRSTUVWXYZ'[9] === "I"
// b. The second tryte value is '9ABCDEFGHIJKLMNOPQRSTUVWXYZ'[3] === "C"
// Our tryte pair is "IC"
//
// RESULT:
// The ASCII char "Z" is represented as "IC" in trytes.
//
function toTrytes(input) {
// If input is not a string, return null
if ( typeof input !== 'string' ) return null
var TRYTE_VALUES = "9ABCDEFGHIJKLMNOPQRSTUVWXYZ";
var trytes = "";
for (var i = 0; i < input.length; i++) {
var char = input[i];
var asciiValue = char.charCodeAt(0);
// If not recognizable ASCII character, return null
if (asciiValue > 255) {
//asciiValue = 32
return null;
}
var firstValue = asciiValue % 27;
var secondValue = (asciiValue - firstValue) / 27;
var trytesValue = TRYTE_VALUES[firstValue] + TRYTE_VALUES[secondValue];
trytes += trytesValue;
}
return trytes;
}
//
// Trytes to bytes
// Reverse operation from the byteToTrytes function in send.js
// 2 Trytes == 1 Byte
// We assume that the trytes are a JSON encoded object thus for our encoding:
// First character = {
// Last character = }
// Everything after that is 9's padding
//
function fromTrytes(inputTrytes) {
// If input is not a string, return null
if ( typeof inputTrytes !== 'string' ) return null
// If input length is odd, return null
if ( inputTrytes.length % 2 ) return null
var TRYTE_VALUES = "9ABCDEFGHIJKLMNOPQRSTUVWXYZ";
var outputString = "";
for (var i = 0; i < inputTrytes.length; i += 2) {
// get a trytes pair
var trytes = inputTrytes[i] + inputTrytes[i + 1];
var firstValue = TRYTE_VALUES.indexOf(trytes[0]);
var secondValue = TRYTE_VALUES.indexOf(trytes[1]);
var decimalValue = firstValue + secondValue * 27;
var character = String.fromCharCode(decimalValue);
outputString += character;
}
return outputString;
}
module.exports = {
toTrytes: toTrytes,
fromTrytes: fromTrytes
}
/***/ }),
/* 24 */
/***/ (function(module, exports) {
module.exports = {
'MAX_USES': 3,
'IRI_PROVIDER': 'http://localhost:14265'
}
/***/ }),
/* 25 */
/***/ (function(module, exports, __webpack_require__) {
const IOTACrypto = __webpack_require__(13);
const multisig = __webpack_require__(18);
const transfer = __webpack_require__(54);
/**
* @constructor Flash
* @param {object} options
*/
function Flash(options) {
if (!options) {
options = {};
}
if (!(this instanceof Flash)) {
return new Flash(options);
}
this.signersCount = 'signersCount' in options ? options.signersCount : 2;
this.state = {
'index': 0,
'security': 'security' in options ? options.security : 2,
'balance': 'balance' in options ? options.balance : 0,
'deposit': 'deposit' in options ? options.deposit : Array(this.signersCount).fill(0),
'stakes': 'stakes' in options ? options.stakes : Array(this.signersCount).fill(0.5),
'outputs': 'outputs' in options ? options.outputs : {},
'transfers': 'transfers' in options ? options.transfers : [],
'remainderAddress': 'remainderAddress' in options ? options.remainderAddress : ''
};
}
Flash.multisig = multisig;
Flash.transfer = transfer;
module.exports = Flash;
/***/ }),
/* 26 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Check if typed arrays are supported
if (typeof ArrayBuffer != 'function') {
return;
}
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
// Reference original init
var superInit = WordArray.init;
// Augment WordArray.init to handle typed arrays
var subInit = WordArray.init = function (typedArray) {
// Convert buffers to uint8
if (typedArray instanceof ArrayBuffer) {
typedArray = new Uint8Array(typedArray);
}
// Convert other array views to uint8
if (
typedArray instanceof Int8Array ||
(typeof Uint8ClampedArray !== "undefined" && typedArray instanceof Uint8ClampedArray) ||
typedArray instanceof Int16Array ||
typedArray instanceof Uint16Array ||
typedArray instanceof Int32Array ||
typedArray instanceof Uint32Array ||
typedArray instanceof Float32Array ||
typedArray instanceof Float64Array
) {
typedArray = new Uint8Array(typedArray.buffer, typedArray.byteOffset, typedArray.byteLength);
}
// Handle Uint8Array
if (typedArray instanceof Uint8Array) {
// Shortcut
var typedArrayByteLength = typedArray.byteLength;
// Extract bytes
var words = [];
for (var i = 0; i < typedArrayByteLength; i++) {
words[i >>> 2] |= typedArray[i] << (24 - (i % 4) * 8);
}
// Initialize this word array
superInit.call(this, words, typedArrayByteLength);
} else {
// Else call normal init
superInit.apply(this, arguments);
}
};
subInit.prototype = WordArray;
}());
return CryptoJS.lib.WordArray;
}));
/***/ }),
/* 27 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var C_enc = C.enc;
/**
* UTF-16 BE encoding strategy.
*/
var Utf16BE = C_enc.Utf16 = C_enc.Utf16BE = {
/**
* Converts a word array to a UTF-16 BE string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The UTF-16 BE string.
*
* @static
*
* @example
*
* var utf16String = CryptoJS.enc.Utf16.stringify(wordArray);
*/
stringify: function (wordArray) {
// Shortcuts
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
// Convert
var utf16Chars = [];
for (var i = 0; i < sigBytes; i += 2) {
var codePoint = (words[i >>> 2] >>> (16 - (i % 4) * 8)) & 0xffff;
utf16Chars.push(String.fromCharCode(codePoint));
}
return utf16Chars.join('');
},
/**
* Converts a UTF-16 BE string to a word array.
*
* @param {string} utf16Str The UTF-16 BE string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Utf16.parse(utf16String);
*/
parse: function (utf16Str) {
// Shortcut
var utf16StrLength = utf16Str.length;
// Convert
var words = [];
for (var i = 0; i < utf16StrLength; i++) {
words[i >>> 1] |= utf16Str.charCodeAt(i) << (16 - (i % 2) * 16);
}
return WordArray.create(words, utf16StrLength * 2);
}
};
/**
* UTF-16 LE encoding strategy.
*/
C_enc.Utf16LE = {
/**
* Converts a word array to a UTF-16 LE string.
*
* @param {WordArray} wordArray The word array.
*
* @return {string} The UTF-16 LE string.
*
* @static
*
* @example
*
* var utf16Str = CryptoJS.enc.Utf16LE.stringify(wordArray);
*/
stringify: function (wordArray) {
// Shortcuts
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
// Convert
var utf16Chars = [];
for (var i = 0; i < sigBytes; i += 2) {
var codePoint = swapEndian((words[i >>> 2] >>> (16 - (i % 4) * 8)) & 0xffff);
utf16Chars.push(String.fromCharCode(codePoint));
}
return utf16Chars.join('');
},
/**
* Converts a UTF-16 LE string to a word array.
*
* @param {string} utf16Str The UTF-16 LE string.
*
* @return {WordArray} The word array.
*
* @static
*
* @example
*
* var wordArray = CryptoJS.enc.Utf16LE.parse(utf16Str);
*/
parse: function (utf16Str) {
// Shortcut
var utf16StrLength = utf16Str.length;
// Convert
var words = [];
for (var i = 0; i < utf16StrLength; i++) {
words[i >>> 1] |= swapEndian(utf16Str.charCodeAt(i) << (16 - (i % 2) * 16));
}
return WordArray.create(words, utf16StrLength * 2);
}
};
function swapEndian(word) {
return ((word << 8) & 0xff00ff00) | ((word >>> 8) & 0x00ff00ff);
}
}());
return CryptoJS.enc.Utf16;
}));
/***/ }),
/* 28 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(20));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./sha256"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var C_algo = C.algo;
var SHA256 = C_algo.SHA256;
/**
* SHA-224 hash algorithm.
*/
var SHA224 = C_algo.SHA224 = SHA256.extend({
_doReset: function () {
this._hash = new WordArray.init([
0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
]);
},
_doFinalize: function () {
var hash = SHA256._doFinalize.call(this);
hash.sigBytes -= 4;
return hash;
}
});
/**
* Shortcut function to the hasher's object interface.
*
* @param {WordArray|string} message The message to hash.
*
* @return {WordArray} The hash.
*
* @static
*
* @example
*
* var hash = CryptoJS.SHA224('message');
* var hash = CryptoJS.SHA224(wordArray);
*/
C.SHA224 = SHA256._createHelper(SHA224);
/**
* Shortcut function to the HMAC's object interface.
*
* @param {WordArray|string} message The message to hash.
* @param {WordArray|string} key The secret key.
*
* @return {WordArray} The HMAC.
*
* @static
*
* @example
*
* var hmac = CryptoJS.HmacSHA224(message, key);
*/
C.HmacSHA224 = SHA256._createHmacHelper(SHA224);
}());
return CryptoJS.SHA224;
}));
/***/ }),
/* 29 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(8), __webpack_require__(21));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./x64-core", "./sha512"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_x64 = C.x64;
var X64Word = C_x64.Word;
var X64WordArray = C_x64.WordArray;
var C_algo = C.algo;
var SHA512 = C_algo.SHA512;
/**
* SHA-384 hash algorithm.
*/
var SHA384 = C_algo.SHA384 = SHA512.extend({
_doReset: function () {
this._hash = new X64WordArray.init([
new X64Word.init(0xcbbb9d5d, 0xc1059ed8), new X64Word.init(0x629a292a, 0x367cd507),
new X64Word.init(0x9159015a, 0x3070dd17), new X64Word.init(0x152fecd8, 0xf70e5939),
new X64Word.init(0x67332667, 0xffc00b31), new X64Word.init(0x8eb44a87, 0x68581511),
new X64Word.init(0xdb0c2e0d, 0x64f98fa7), new X64Word.init(0x47b5481d, 0xbefa4fa4)
]);
},
_doFinalize: function () {
var hash = SHA512._doFinalize.call(this);
hash.sigBytes -= 16;
return hash;
}
});
/**
* Shortcut function to the hasher's object interface.
*
* @param {WordArray|string} message The message to hash.
*
* @return {WordArray} The hash.
*
* @static
*
* @example
*
* var hash = CryptoJS.SHA384('message');
* var hash = CryptoJS.SHA384(wordArray);
*/
C.SHA384 = SHA512._createHelper(SHA384);
/**
* Shortcut function to the HMAC's object interface.
*
* @param {WordArray|string} message The message to hash.
* @param {WordArray|string} key The secret key.
*
* @return {WordArray} The HMAC.
*
* @static
*
* @example
*
* var hmac = CryptoJS.HmacSHA384(message, key);
*/
C.HmacSHA384 = SHA512._createHmacHelper(SHA384);
}());
return CryptoJS.SHA384;
}));
/***/ }),
/* 30 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(8));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./x64-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function (Math) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var Hasher = C_lib.Hasher;
var C_x64 = C.x64;
var X64Word = C_x64.Word;
var C_algo = C.algo;
// Constants tables
var RHO_OFFSETS = [];
var PI_INDEXES = [];
var ROUND_CONSTANTS = [];
// Compute Constants
(function () {
// Compute rho offset constants
var x = 1, y = 0;
for (var t = 0; t < 24; t++) {
RHO_OFFSETS[x + 5 * y] = ((t + 1) * (t + 2) / 2) % 64;
var newX = y % 5;
var newY = (2 * x + 3 * y) % 5;
x = newX;
y = newY;
}
// Compute pi index constants
for (var x = 0; x < 5; x++) {
for (var y = 0; y < 5; y++) {
PI_INDEXES[x + 5 * y] = y + ((2 * x + 3 * y) % 5) * 5;
}
}
// Compute round constants
var LFSR = 0x01;
for (var i = 0; i < 24; i++) {
var roundConstantMsw = 0;
var roundConstantLsw = 0;
for (var j = 0; j < 7; j++) {
if (LFSR & 0x01) {
var bitPosition = (1 << j) - 1;
if (bitPosition < 32) {
roundConstantLsw ^= 1 << bitPosition;
} else /* if (bitPosition >= 32) */ {
roundConstantMsw ^= 1 << (bitPosition - 32);
}
}
// Compute next LFSR
if (LFSR & 0x80) {
// Primitive polynomial over GF(2): x^8 + x^6 + x^5 + x^4 + 1
LFSR = (LFSR << 1) ^ 0x71;
} else {
LFSR <<= 1;
}
}
ROUND_CONSTANTS[i] = X64Word.create(roundConstantMsw, roundConstantLsw);
}
}());
// Reusable objects for temporary values
var T = [];
(function () {
for (var i = 0; i < 25; i++) {
T[i] = X64Word.create();
}
}());
/**
* SHA-3 hash algorithm.
*/
var SHA3 = C_algo.SHA3 = Hasher.extend({
/**
* Configuration options.
*
* @property {number} outputLength
* The desired number of bits in the output hash.
* Only values permitted are: 224, 256, 384, 512.
* Default: 512
*/
cfg: Hasher.cfg.extend({
outputLength: 512
}),
_doReset: function () {
var state = this._state = []
for (var i = 0; i < 25; i++) {
state[i] = new X64Word.init();
}
this.blockSize = (1600 - 2 * this.cfg.outputLength) / 32;
},
_doProcessBlock: function (M, offset) {
// Shortcuts
var state = this._state;
var nBlockSizeLanes = this.blockSize / 2;
// Absorb
for (var i = 0; i < nBlockSizeLanes; i++) {
// Shortcuts
var M2i = M[offset + 2 * i];
var M2i1 = M[offset + 2 * i + 1];
// Swap endian
M2i = (
(((M2i << 8) | (M2i >>> 24)) & 0x00ff00ff) |
(((M2i << 24) | (M2i >>> 8)) & 0xff00ff00)
);
M2i1 = (
(((M2i1 << 8) | (M2i1 >>> 24)) & 0x00ff00ff) |
(((M2i1 << 24) | (M2i1 >>> 8)) & 0xff00ff00)
);
// Absorb message into state
var lane = state[i];
lane.high ^= M2i1;
lane.low ^= M2i;
}
// Rounds
for (var round = 0; round < 24; round++) {
// Theta
for (var x = 0; x < 5; x++) {
// Mix column lanes
var tMsw = 0, tLsw = 0;
for (var y = 0; y < 5; y++) {
var lane = state[x + 5 * y];
tMsw ^= lane.high;
tLsw ^= lane.low;
}
// Temporary values
var Tx = T[x];
Tx.high = tMsw;
Tx.low = tLsw;
}
for (var x = 0; x < 5; x++) {
// Shortcuts
var Tx4 = T[(x + 4) % 5];
var Tx1 = T[(x + 1) % 5];
var Tx1Msw = Tx1.high;
var Tx1Lsw = Tx1.low;
// Mix surrounding columns
var tMsw = Tx4.high ^ ((Tx1Msw << 1) | (Tx1Lsw >>> 31));
var tLsw = Tx4.low ^ ((Tx1Lsw << 1) | (Tx1Msw >>> 31));
for (var y = 0; y < 5; y++) {
var lane = state[x + 5 * y];
lane.high ^= tMsw;
lane.low ^= tLsw;
}
}
// Rho Pi
for (var laneIndex = 1; laneIndex < 25; laneIndex++) {
// Shortcuts
var lane = state[laneIndex];
var laneMsw = lane.high;
var laneLsw = lane.low;
var rhoOffset = RHO_OFFSETS[laneIndex];
// Rotate lanes
if (rhoOffset < 32) {
var tMsw = (laneMsw << rhoOffset) | (laneLsw >>> (32 - rhoOffset));
var tLsw = (laneLsw << rhoOffset) | (laneMsw >>> (32 - rhoOffset));
} else /* if (rhoOffset >= 32) */ {
var tMsw = (laneLsw << (rhoOffset - 32)) | (laneMsw >>> (64 - rhoOffset));
var tLsw = (laneMsw << (rhoOffset - 32)) | (laneLsw >>> (64 - rhoOffset));
}
// Transpose lanes
var TPiLane = T[PI_INDEXES[laneIndex]];
TPiLane.high = tMsw;
TPiLane.low = tLsw;
}
// Rho pi at x = y = 0
var T0 = T[0];
var state0 = state[0];
T0.high = state0.high;
T0.low = state0.low;
// Chi
for (var x = 0; x < 5; x++) {
for (var y = 0; y < 5; y++) {
// Shortcuts
var laneIndex = x + 5 * y;
var lane = state[laneIndex];
var TLane = T[laneIndex];
var Tx1Lane = T[((x + 1) % 5) + 5 * y];
var Tx2Lane = T[((x + 2) % 5) + 5 * y];
// Mix rows
lane.high = TLane.high ^ (~Tx1Lane.high & Tx2Lane.high);
lane.low = TLane.low ^ (~Tx1Lane.low & Tx2Lane.low);
}
}
// Iota
var lane = state[0];
var roundConstant = ROUND_CONSTANTS[round];
lane.high ^= roundConstant.high;
lane.low ^= roundConstant.low;;
}
},
_doFinalize: function () {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var nBitsTotal = this._nDataBytes * 8;
var nBitsLeft = data.sigBytes * 8;
var blockSizeBits = this.blockSize * 32;
// Add padding
dataWords[nBitsLeft >>> 5] |= 0x1 << (24 - nBitsLeft % 32);
dataWords[((Math.ceil((nBitsLeft + 1) / blockSizeBits) * blockSizeBits) >>> 5) - 1] |= 0x80;
data.sigBytes = dataWords.length * 4;
// Hash final blocks
this._process();
// Shortcuts
var state = this._state;
var outputLengthBytes = this.cfg.outputLength / 8;
var outputLengthLanes = outputLengthBytes / 8;
// Squeeze
var hashWords = [];
for (var i = 0; i < outputLengthLanes; i++) {
// Shortcuts
var lane = state[i];
var laneMsw = lane.high;
var laneLsw = lane.low;
// Swap endian
laneMsw = (
(((laneMsw << 8) | (laneMsw >>> 24)) & 0x00ff00ff) |
(((laneMsw << 24) | (laneMsw >>> 8)) & 0xff00ff00)
);
laneLsw = (
(((laneLsw << 8) | (laneLsw >>> 24)) & 0x00ff00ff) |
(((laneLsw << 24) | (laneLsw >>> 8)) & 0xff00ff00)
);
// Squeeze state to retrieve hash
hashWords.push(laneLsw);
hashWords.push(laneMsw);
}
// Return final computed hash
return new WordArray.init(hashWords, outputLengthBytes);
},
clone: function () {
var clone = Hasher.clone.call(this);
var state = clone._state = this._state.slice(0);
for (var i = 0; i < 25; i++) {
state[i] = state[i].clone();
}
return clone;
}
});
/**
* Shortcut function to the hasher's object interface.
*
* @param {WordArray|string} message The message to hash.
*
* @return {WordArray} The hash.
*
* @static
*
* @example
*
* var hash = CryptoJS.SHA3('message');
* var hash = CryptoJS.SHA3(wordArray);
*/
C.SHA3 = Hasher._createHelper(SHA3);
/**
* Shortcut function to the HMAC's object interface.
*
* @param {WordArray|string} message The message to hash.
* @param {WordArray|string} key The secret key.
*
* @return {WordArray} The HMAC.
*
* @static
*
* @example
*
* var hmac = CryptoJS.HmacSHA3(message, key);
*/
C.HmacSHA3 = Hasher._createHmacHelper(SHA3);
}(Math));
return CryptoJS.SHA3;
}));
/***/ }),
/* 31 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/** @preserve
(c) 2012 by Cédric Mesnil. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
(function (Math) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var Hasher = C_lib.Hasher;
var C_algo = C.algo;
// Constants table
var _zl = WordArray.create([
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13]);
var _zr = WordArray.create([
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11]);
var _sl = WordArray.create([
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 ]);
var _sr = WordArray.create([
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 ]);
var _hl = WordArray.create([ 0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E]);
var _hr = WordArray.create([ 0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000]);
/**
* RIPEMD160 hash algorithm.
*/
var RIPEMD160 = C_algo.RIPEMD160 = Hasher.extend({
_doReset: function () {
this._hash = WordArray.create([0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0]);
},
_doProcessBlock: function (M, offset) {
// Swap endian
for (var i = 0; i < 16; i++) {
// Shortcuts
var offset_i = offset + i;
var M_offset_i = M[offset_i];
// Swap
M[offset_i] = (
(((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
(((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
);
}
// Shortcut
var H = this._hash.words;
var hl = _hl.words;
var hr = _hr.words;
var zl = _zl.words;
var zr = _zr.words;
var sl = _sl.words;
var sr = _sr.words;
// Working variables
var al, bl, cl, dl, el;
var ar, br, cr, dr, er;
ar = al = H[0];
br = bl = H[1];
cr = cl = H[2];
dr = dl = H[3];
er = el = H[4];
// Computation
var t;
for (var i = 0; i < 80; i += 1) {
t = (al + M[offset+zl[i]])|0;
if (i<16){
t += f1(bl,cl,dl) + hl[0];
} else if (i<32) {
t += f2(bl,cl,dl) + hl[1];
} else if (i<48) {
t += f3(bl,cl,dl) + hl[2];
} else if (i<64) {
t += f4(bl,cl,dl) + hl[3];
} else {// if (i<80) {
t += f5(bl,cl,dl) + hl[4];
}
t = t|0;
t = rotl(t,sl[i]);
t = (t+el)|0;
al = el;
el = dl;
dl = rotl(cl, 10);
cl = bl;
bl = t;
t = (ar + M[offset+zr[i]])|0;
if (i<16){
t += f5(br,cr,dr) + hr[0];
} else if (i<32) {
t += f4(br,cr,dr) + hr[1];
} else if (i<48) {
t += f3(br,cr,dr) + hr[2];
} else if (i<64) {
t += f2(br,cr,dr) + hr[3];
} else {// if (i<80) {
t += f1(br,cr,dr) + hr[4];
}
t = t|0;
t = rotl(t,sr[i]) ;
t = (t+er)|0;
ar = er;
er = dr;
dr = rotl(cr, 10);
cr = br;
br = t;
}
// Intermediate hash value
t = (H[1] + cl + dr)|0;
H[1] = (H[2] + dl + er)|0;
H[2] = (H[3] + el + ar)|0;
H[3] = (H[4] + al + br)|0;
H[4] = (H[0] + bl + cr)|0;
H[0] = t;
},
_doFinalize: function () {
// Shortcuts
var data = this._data;
var dataWords = data.words;
var nBitsTotal = this._nDataBytes * 8;
var nBitsLeft = data.sigBytes * 8;
// Add padding
dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
(((nBitsTotal << 8) | (nBitsTotal >>> 24)) & 0x00ff00ff) |
(((nBitsTotal << 24) | (nBitsTotal >>> 8)) & 0xff00ff00)
);
data.sigBytes = (dataWords.length + 1) * 4;
// Hash final blocks
this._process();
// Shortcuts
var hash = this._hash;
var H = hash.words;
// Swap endian
for (var i = 0; i < 5; i++) {
// Shortcut
var H_i = H[i];
// Swap
H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
(((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
}
// Return final computed hash
return hash;
},
clone: function () {
var clone = Hasher.clone.call(this);
clone._hash = this._hash.clone();
return clone;
}
});
function f1(x, y, z) {
return ((x) ^ (y) ^ (z));
}
function f2(x, y, z) {
return (((x)&(y)) | ((~x)&(z)));
}
function f3(x, y, z) {
return (((x) | (~(y))) ^ (z));
}
function f4(x, y, z) {
return (((x) & (z)) | ((y)&(~(z))));
}
function f5(x, y, z) {
return ((x) ^ ((y) |(~(z))));
}
function rotl(x,n) {
return (x<<n) | (x>>>(32-n));
}
/**
* Shortcut function to the hasher's object interface.
*
* @param {WordArray|string} message The message to hash.
*
* @return {WordArray} The hash.
*
* @static
*
* @example
*
* var hash = CryptoJS.RIPEMD160('message');
* var hash = CryptoJS.RIPEMD160(wordArray);
*/
C.RIPEMD160 = Hasher._createHelper(RIPEMD160);
/**
* Shortcut function to the HMAC's object interface.
*
* @param {WordArray|string} message The message to hash.
* @param {WordArray|string} key The secret key.
*
* @return {WordArray} The HMAC.
*
* @static
*
* @example
*
* var hmac = CryptoJS.HmacRIPEMD160(message, key);
*/
C.HmacRIPEMD160 = Hasher._createHmacHelper(RIPEMD160);
}(Math));
return CryptoJS.RIPEMD160;
}));
/***/ }),
/* 32 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(14), __webpack_require__(15));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./sha1", "./hmac"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var Base = C_lib.Base;
var WordArray = C_lib.WordArray;
var C_algo = C.algo;
var SHA1 = C_algo.SHA1;
var HMAC = C_algo.HMAC;
/**
* Password-Based Key Derivation Function 2 algorithm.
*/
var PBKDF2 = C_algo.PBKDF2 = Base.extend({
/**
* Configuration options.
*
* @property {number} keySize The key size in words to generate. Default: 4 (128 bits)
* @property {Hasher} hasher The hasher to use. Default: SHA1
* @property {number} iterations The number of iterations to perform. Default: 1
*/
cfg: Base.extend({
keySize: 128/32,
hasher: SHA1,
iterations: 1
}),
/**
* Initializes a newly created key derivation function.
*
* @param {Object} cfg (Optional) The configuration options to use for the derivation.
*
* @example
*
* var kdf = CryptoJS.algo.PBKDF2.create();
* var kdf = CryptoJS.algo.PBKDF2.create({ keySize: 8 });
* var kdf = CryptoJS.algo.PBKDF2.create({ keySize: 8, iterations: 1000 });
*/
init: function (cfg) {
this.cfg = this.cfg.extend(cfg);
},
/**
* Computes the Password-Based Key Derivation Function 2.
*
* @param {WordArray|string} password The password.
* @param {WordArray|string} salt A salt.
*
* @return {WordArray} The derived key.
*
* @example
*
* var key = kdf.compute(password, salt);
*/
compute: function (password, salt) {
// Shortcut
var cfg = this.cfg;
// Init HMAC
var hmac = HMAC.create(cfg.hasher, password);
// Initial values
var derivedKey = WordArray.create();
var blockIndex = WordArray.create([0x00000001]);
// Shortcuts
var derivedKeyWords = derivedKey.words;
var blockIndexWords = blockIndex.words;
var keySize = cfg.keySize;
var iterations = cfg.iterations;
// Generate key
while (derivedKeyWords.length < keySize) {
var block = hmac.update(salt).finalize(blockIndex);
hmac.reset();
// Shortcuts
var blockWords = block.words;
var blockWordsLength = blockWords.length;
// Iterations
var intermediate = block;
for (var i = 1; i < iterations; i++) {
intermediate = hmac.finalize(intermediate);
hmac.reset();
// Shortcut
var intermediateWords = intermediate.words;
// XOR intermediate with block
for (var j = 0; j < blockWordsLength; j++) {
blockWords[j] ^= intermediateWords[j];
}
}
derivedKey.concat(block);
blockIndexWords[0]++;
}
derivedKey.sigBytes = keySize * 4;
return derivedKey;
}
});
/**
* Computes the Password-Based Key Derivation Function 2.
*
* @param {WordArray|string} password The password.
* @param {WordArray|string} salt A salt.
* @param {Object} cfg (Optional) The configuration options to use for this computation.
*
* @return {WordArray} The derived key.
*
* @static
*
* @example
*
* var key = CryptoJS.PBKDF2(password, salt);
* var key = CryptoJS.PBKDF2(password, salt, { keySize: 8 });
* var key = CryptoJS.PBKDF2(password, salt, { keySize: 8, iterations: 1000 });
*/
C.PBKDF2 = function (password, salt, cfg) {
return PBKDF2.create(cfg).compute(password, salt);
};
}());
return CryptoJS.PBKDF2;
}));
/***/ }),
/* 33 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/**
* Cipher Feedback block mode.
*/
CryptoJS.mode.CFB = (function () {
var CFB = CryptoJS.lib.BlockCipherMode.extend();
CFB.Encryptor = CFB.extend({
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher;
var blockSize = cipher.blockSize;
generateKeystreamAndEncrypt.call(this, words, offset, blockSize, cipher);
// Remember this block to use with next block
this._prevBlock = words.slice(offset, offset + blockSize);
}
});
CFB.Decryptor = CFB.extend({
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher;
var blockSize = cipher.blockSize;
// Remember this block to use with next block
var thisBlock = words.slice(offset, offset + blockSize);
generateKeystreamAndEncrypt.call(this, words, offset, blockSize, cipher);
// This block becomes the previous block
this._prevBlock = thisBlock;
}
});
function generateKeystreamAndEncrypt(words, offset, blockSize, cipher) {
// Shortcut
var iv = this._iv;
// Generate keystream
if (iv) {
var keystream = iv.slice(0);
// Remove IV for subsequent blocks
this._iv = undefined;
} else {
var keystream = this._prevBlock;
}
cipher.encryptBlock(keystream, 0);
// Encrypt
for (var i = 0; i < blockSize; i++) {
words[offset + i] ^= keystream[i];
}
}
return CFB;
}());
return CryptoJS.mode.CFB;
}));
/***/ }),
/* 34 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/**
* Counter block mode.
*/
CryptoJS.mode.CTR = (function () {
var CTR = CryptoJS.lib.BlockCipherMode.extend();
var Encryptor = CTR.Encryptor = CTR.extend({
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher
var blockSize = cipher.blockSize;
var iv = this._iv;
var counter = this._counter;
// Generate keystream
if (iv) {
counter = this._counter = iv.slice(0);
// Remove IV for subsequent blocks
this._iv = undefined;
}
var keystream = counter.slice(0);
cipher.encryptBlock(keystream, 0);
// Increment counter
counter[blockSize - 1] = (counter[blockSize - 1] + 1) | 0
// Encrypt
for (var i = 0; i < blockSize; i++) {
words[offset + i] ^= keystream[i];
}
}
});
CTR.Decryptor = Encryptor;
return CTR;
}());
return CryptoJS.mode.CTR;
}));
/***/ }),
/* 35 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/** @preserve
* Counter block mode compatible with Dr Brian Gladman fileenc.c
* derived from CryptoJS.mode.CTR
* Jan Hruby jhruby.web@gmail.com
*/
CryptoJS.mode.CTRGladman = (function () {
var CTRGladman = CryptoJS.lib.BlockCipherMode.extend();
function incWord(word)
{
if (((word >> 24) & 0xff) === 0xff) { //overflow
var b1 = (word >> 16)&0xff;
var b2 = (word >> 8)&0xff;
var b3 = word & 0xff;
if (b1 === 0xff) // overflow b1
{
b1 = 0;
if (b2 === 0xff)
{
b2 = 0;
if (b3 === 0xff)
{
b3 = 0;
}
else
{
++b3;
}
}
else
{
++b2;
}
}
else
{
++b1;
}
word = 0;
word += (b1 << 16);
word += (b2 << 8);
word += b3;
}
else
{
word += (0x01 << 24);
}
return word;
}
function incCounter(counter)
{
if ((counter[0] = incWord(counter[0])) === 0)
{
// encr_data in fileenc.c from Dr Brian Gladman's counts only with DWORD j < 8
counter[1] = incWord(counter[1]);
}
return counter;
}
var Encryptor = CTRGladman.Encryptor = CTRGladman.extend({
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher
var blockSize = cipher.blockSize;
var iv = this._iv;
var counter = this._counter;
// Generate keystream
if (iv) {
counter = this._counter = iv.slice(0);
// Remove IV for subsequent blocks
this._iv = undefined;
}
incCounter(counter);
var keystream = counter.slice(0);
cipher.encryptBlock(keystream, 0);
// Encrypt
for (var i = 0; i < blockSize; i++) {
words[offset + i] ^= keystream[i];
}
}
});
CTRGladman.Decryptor = Encryptor;
return CTRGladman;
}());
return CryptoJS.mode.CTRGladman;
}));
/***/ }),
/* 36 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/**
* Output Feedback block mode.
*/
CryptoJS.mode.OFB = (function () {
var OFB = CryptoJS.lib.BlockCipherMode.extend();
var Encryptor = OFB.Encryptor = OFB.extend({
processBlock: function (words, offset) {
// Shortcuts
var cipher = this._cipher
var blockSize = cipher.blockSize;
var iv = this._iv;
var keystream = this._keystream;
// Generate keystream
if (iv) {
keystream = this._keystream = iv.slice(0);
// Remove IV for subsequent blocks
this._iv = undefined;
}
cipher.encryptBlock(keystream, 0);
// Encrypt
for (var i = 0; i < blockSize; i++) {
words[offset + i] ^= keystream[i];
}
}
});
OFB.Decryptor = Encryptor;
return OFB;
}());
return CryptoJS.mode.OFB;
}));
/***/ }),
/* 37 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/**
* Electronic Codebook block mode.
*/
CryptoJS.mode.ECB = (function () {
var ECB = CryptoJS.lib.BlockCipherMode.extend();
ECB.Encryptor = ECB.extend({
processBlock: function (words, offset) {
this._cipher.encryptBlock(words, offset);
}
});
ECB.Decryptor = ECB.extend({
processBlock: function (words, offset) {
this._cipher.decryptBlock(words, offset);
}
});
return ECB;
}());
return CryptoJS.mode.ECB;
}));
/***/ }),
/* 38 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/**
* ANSI X.923 padding strategy.
*/
CryptoJS.pad.AnsiX923 = {
pad: function (data, blockSize) {
// Shortcuts
var dataSigBytes = data.sigBytes;
var blockSizeBytes = blockSize * 4;
// Count padding bytes
var nPaddingBytes = blockSizeBytes - dataSigBytes % blockSizeBytes;
// Compute last byte position
var lastBytePos = dataSigBytes + nPaddingBytes - 1;
// Pad
data.clamp();
data.words[lastBytePos >>> 2] |= nPaddingBytes << (24 - (lastBytePos % 4) * 8);
data.sigBytes += nPaddingBytes;
},
unpad: function (data) {
// Get number of padding bytes from last byte
var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
// Remove padding
data.sigBytes -= nPaddingBytes;
}
};
return CryptoJS.pad.Ansix923;
}));
/***/ }),
/* 39 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/**
* ISO 10126 padding strategy.
*/
CryptoJS.pad.Iso10126 = {
pad: function (data, blockSize) {
// Shortcut
var blockSizeBytes = blockSize * 4;
// Count padding bytes
var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;
// Pad
data.concat(CryptoJS.lib.WordArray.random(nPaddingBytes - 1)).
concat(CryptoJS.lib.WordArray.create([nPaddingBytes << 24], 1));
},
unpad: function (data) {
// Get number of padding bytes from last byte
var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
// Remove padding
data.sigBytes -= nPaddingBytes;
}
};
return CryptoJS.pad.Iso10126;
}));
/***/ }),
/* 40 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/**
* ISO/IEC 9797-1 Padding Method 2.
*/
CryptoJS.pad.Iso97971 = {
pad: function (data, blockSize) {
// Add 0x80 byte
data.concat(CryptoJS.lib.WordArray.create([0x80000000], 1));
// Zero pad the rest
CryptoJS.pad.ZeroPadding.pad(data, blockSize);
},
unpad: function (data) {
// Remove zero padding
CryptoJS.pad.ZeroPadding.unpad(data);
// Remove one more byte -- the 0x80 byte
data.sigBytes--;
}
};
return CryptoJS.pad.Iso97971;
}));
/***/ }),
/* 41 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/**
* Zero padding strategy.
*/
CryptoJS.pad.ZeroPadding = {
pad: function (data, blockSize) {
// Shortcut
var blockSizeBytes = blockSize * 4;
// Pad
data.clamp();
data.sigBytes += blockSizeBytes - ((data.sigBytes % blockSizeBytes) || blockSizeBytes);
},
unpad: function (data) {
// Shortcut
var dataWords = data.words;
// Unpad
var i = data.sigBytes - 1;
while (!((dataWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff)) {
i--;
}
data.sigBytes = i + 1;
}
};
return CryptoJS.pad.ZeroPadding;
}));
/***/ }),
/* 42 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
/**
* A noop padding strategy.
*/
CryptoJS.pad.NoPadding = {
pad: function () {
},
unpad: function () {
}
};
return CryptoJS.pad.NoPadding;
}));
/***/ }),
/* 43 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function (undefined) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var CipherParams = C_lib.CipherParams;
var C_enc = C.enc;
var Hex = C_enc.Hex;
var C_format = C.format;
var HexFormatter = C_format.Hex = {
/**
* Converts the ciphertext of a cipher params object to a hexadecimally encoded string.
*
* @param {CipherParams} cipherParams The cipher params object.
*
* @return {string} The hexadecimally encoded string.
*
* @static
*
* @example
*
* var hexString = CryptoJS.format.Hex.stringify(cipherParams);
*/
stringify: function (cipherParams) {
return cipherParams.ciphertext.toString(Hex);
},
/**
* Converts a hexadecimally encoded ciphertext string to a cipher params object.
*
* @param {string} input The hexadecimally encoded string.
*
* @return {CipherParams} The cipher params object.
*
* @static
*
* @example
*
* var cipherParams = CryptoJS.format.Hex.parse(hexString);
*/
parse: function (input) {
var ciphertext = Hex.parse(input);
return CipherParams.create({ ciphertext: ciphertext });
}
};
}());
return CryptoJS.format.Hex;
}));
/***/ }),
/* 44 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(6), __webpack_require__(7), __webpack_require__(4), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./enc-base64", "./md5", "./evpkdf", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var BlockCipher = C_lib.BlockCipher;
var C_algo = C.algo;
// Lookup tables
var SBOX = [];
var INV_SBOX = [];
var SUB_MIX_0 = [];
var SUB_MIX_1 = [];
var SUB_MIX_2 = [];
var SUB_MIX_3 = [];
var INV_SUB_MIX_0 = [];
var INV_SUB_MIX_1 = [];
var INV_SUB_MIX_2 = [];
var INV_SUB_MIX_3 = [];
// Compute lookup tables
(function () {
// Compute double table
var d = [];
for (var i = 0; i < 256; i++) {
if (i < 128) {
d[i] = i << 1;
} else {
d[i] = (i << 1) ^ 0x11b;
}
}
// Walk GF(2^8)
var x = 0;
var xi = 0;
for (var i = 0; i < 256; i++) {
// Compute sbox
var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
SBOX[x] = sx;
INV_SBOX[sx] = x;
// Compute multiplication
var x2 = d[x];
var x4 = d[x2];
var x8 = d[x4];
// Compute sub bytes, mix columns tables
var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
SUB_MIX_0[x] = (t << 24) | (t >>> 8);
SUB_MIX_1[x] = (t << 16) | (t >>> 16);
SUB_MIX_2[x] = (t << 8) | (t >>> 24);
SUB_MIX_3[x] = t;
// Compute inv sub bytes, inv mix columns tables
var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
INV_SUB_MIX_3[sx] = t;
// Compute next counter
if (!x) {
x = xi = 1;
} else {
x = x2 ^ d[d[d[x8 ^ x2]]];
xi ^= d[d[xi]];
}
}
}());
// Precomputed Rcon lookup
var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
/**
* AES block cipher algorithm.
*/
var AES = C_algo.AES = BlockCipher.extend({
_doReset: function () {
// Skip reset of nRounds has been set before and key did not change
if (this._nRounds && this._keyPriorReset === this._key) {
return;
}
// Shortcuts
var key = this._keyPriorReset = this._key;
var keyWords = key.words;
var keySize = key.sigBytes / 4;
// Compute number of rounds
var nRounds = this._nRounds = keySize + 6;
// Compute number of key schedule rows
var ksRows = (nRounds + 1) * 4;
// Compute key schedule
var keySchedule = this._keySchedule = [];
for (var ksRow = 0; ksRow < ksRows; ksRow++) {
if (ksRow < keySize) {
keySchedule[ksRow] = keyWords[ksRow];
} else {
var t = keySchedule[ksRow - 1];
if (!(ksRow % keySize)) {
// Rot word
t = (t << 8) | (t >>> 24);
// Sub word
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
// Mix Rcon
t ^= RCON[(ksRow / keySize) | 0] << 24;
} else if (keySize > 6 && ksRow % keySize == 4) {
// Sub word
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
}
keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
}
}
// Compute inv key schedule
var invKeySchedule = this._invKeySchedule = [];
for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
var ksRow = ksRows - invKsRow;
if (invKsRow % 4) {
var t = keySchedule[ksRow];
} else {
var t = keySchedule[ksRow - 4];
}
if (invKsRow < 4 || ksRow <= 4) {
invKeySchedule[invKsRow] = t;
} else {
invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
}
}
},
encryptBlock: function (M, offset) {
this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
},
decryptBlock: function (M, offset) {
// Swap 2nd and 4th rows
var t = M[offset + 1];
M[offset + 1] = M[offset + 3];
M[offset + 3] = t;
this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);
// Inv swap 2nd and 4th rows
var t = M[offset + 1];
M[offset + 1] = M[offset + 3];
M[offset + 3] = t;
},
_doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
// Shortcut
var nRounds = this._nRounds;
// Get input, add round key
var s0 = M[offset] ^ keySchedule[0];
var s1 = M[offset + 1] ^ keySchedule[1];
var s2 = M[offset + 2] ^ keySchedule[2];
var s3 = M[offset + 3] ^ keySchedule[3];
// Key schedule row counter
var ksRow = 4;
// Rounds
for (var round = 1; round < nRounds; round++) {
// Shift rows, sub bytes, mix columns, add round key
var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];
// Update state
s0 = t0;
s1 = t1;
s2 = t2;
s3 = t3;
}
// Shift rows, sub bytes, add round key
var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];
// Set output
M[offset] = t0;
M[offset + 1] = t1;
M[offset + 2] = t2;
M[offset + 3] = t3;
},
keySize: 256/32
});
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
* var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg);
*/
C.AES = BlockCipher._createHelper(AES);
}());
return CryptoJS.AES;
}));
/***/ }),
/* 45 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(6), __webpack_require__(7), __webpack_require__(4), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./enc-base64", "./md5", "./evpkdf", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var WordArray = C_lib.WordArray;
var BlockCipher = C_lib.BlockCipher;
var C_algo = C.algo;
// Permuted Choice 1 constants
var PC1 = [
57, 49, 41, 33, 25, 17, 9, 1,
58, 50, 42, 34, 26, 18, 10, 2,
59, 51, 43, 35, 27, 19, 11, 3,
60, 52, 44, 36, 63, 55, 47, 39,
31, 23, 15, 7, 62, 54, 46, 38,
30, 22, 14, 6, 61, 53, 45, 37,
29, 21, 13, 5, 28, 20, 12, 4
];
// Permuted Choice 2 constants
var PC2 = [
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
];
// Cumulative bit shift constants
var BIT_SHIFTS = [1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28];
// SBOXes and round permutation constants
var SBOX_P = [
{
0x0: 0x808200,
0x10000000: 0x8000,
0x20000000: 0x808002,
0x30000000: 0x2,
0x40000000: 0x200,
0x50000000: 0x808202,
0x60000000: 0x800202,
0x70000000: 0x800000,
0x80000000: 0x202,
0x90000000: 0x800200,
0xa0000000: 0x8200,
0xb0000000: 0x808000,
0xc0000000: 0x8002,
0xd0000000: 0x800002,
0xe0000000: 0x0,
0xf0000000: 0x8202,
0x8000000: 0x0,
0x18000000: 0x808202,
0x28000000: 0x8202,
0x38000000: 0x8000,
0x48000000: 0x808200,
0x58000000: 0x200,
0x68000000: 0x808002,
0x78000000: 0x2,
0x88000000: 0x800200,
0x98000000: 0x8200,
0xa8000000: 0x808000,
0xb8000000: 0x800202,
0xc8000000: 0x800002,
0xd8000000: 0x8002,
0xe8000000: 0x202,
0xf8000000: 0x800000,
0x1: 0x8000,
0x10000001: 0x2,
0x20000001: 0x808200,
0x30000001: 0x800000,
0x40000001: 0x808002,
0x50000001: 0x8200,
0x60000001: 0x200,
0x70000001: 0x800202,
0x80000001: 0x808202,
0x90000001: 0x808000,
0xa0000001: 0x800002,
0xb0000001: 0x8202,
0xc0000001: 0x202,
0xd0000001: 0x800200,
0xe0000001: 0x8002,
0xf0000001: 0x0,
0x8000001: 0x808202,
0x18000001: 0x808000,
0x28000001: 0x800000,
0x38000001: 0x200,
0x48000001: 0x8000,
0x58000001: 0x800002,
0x68000001: 0x2,
0x78000001: 0x8202,
0x88000001: 0x8002,
0x98000001: 0x800202,
0xa8000001: 0x202,
0xb8000001: 0x808200,
0xc8000001: 0x800200,
0xd8000001: 0x0,
0xe8000001: 0x8200,
0xf8000001: 0x808002
},
{
0x0: 0x40084010,
0x1000000: 0x4000,
0x2000000: 0x80000,
0x3000000: 0x40080010,
0x4000000: 0x40000010,
0x5000000: 0x40084000,
0x6000000: 0x40004000,
0x7000000: 0x10,
0x8000000: 0x84000,
0x9000000: 0x40004010,
0xa000000: 0x40000000,
0xb000000: 0x84010,
0xc000000: 0x80010,
0xd000000: 0x0,
0xe000000: 0x4010,
0xf000000: 0x40080000,
0x800000: 0x40004000,
0x1800000: 0x84010,
0x2800000: 0x10,
0x3800000: 0x40004010,
0x4800000: 0x40084010,
0x5800000: 0x40000000,
0x6800000: 0x80000,
0x7800000: 0x40080010,
0x8800000: 0x80010,
0x9800000: 0x0,
0xa800000: 0x4000,
0xb800000: 0x40080000,
0xc800000: 0x40000010,
0xd800000: 0x84000,
0xe800000: 0x40084000,
0xf800000: 0x4010,
0x10000000: 0x0,
0x11000000: 0x40080010,
0x12000000: 0x40004010,
0x13000000: 0x40084000,
0x14000000: 0x40080000,
0x15000000: 0x10,
0x16000000: 0x84010,
0x17000000: 0x4000,
0x18000000: 0x4010,
0x19000000: 0x80000,
0x1a000000: 0x80010,
0x1b000000: 0x40000010,
0x1c000000: 0x84000,
0x1d000000: 0x40004000,
0x1e000000: 0x40000000,
0x1f000000: 0x40084010,
0x10800000: 0x84010,
0x11800000: 0x80000,
0x12800000: 0x40080000,
0x13800000: 0x4000,
0x14800000: 0x40004000,
0x15800000: 0x40084010,
0x16800000: 0x10,
0x17800000: 0x40000000,
0x18800000: 0x40084000,
0x19800000: 0x40000010,
0x1a800000: 0x40004010,
0x1b800000: 0x80010,
0x1c800000: 0x0,
0x1d800000: 0x4010,
0x1e800000: 0x40080010,
0x1f800000: 0x84000
},
{
0x0: 0x104,
0x100000: 0x0,
0x200000: 0x4000100,
0x300000: 0x10104,
0x400000: 0x10004,
0x500000: 0x4000004,
0x600000: 0x4010104,
0x700000: 0x4010000,
0x800000: 0x4000000,
0x900000: 0x4010100,
0xa00000: 0x10100,
0xb00000: 0x4010004,
0xc00000: 0x4000104,
0xd00000: 0x10000,
0xe00000: 0x4,
0xf00000: 0x100,
0x80000: 0x4010100,
0x180000: 0x4010004,
0x280000: 0x0,
0x380000: 0x4000100,
0x480000: 0x4000004,
0x580000: 0x10000,
0x680000: 0x10004,
0x780000: 0x104,
0x880000: 0x4,
0x980000: 0x100,
0xa80000: 0x4010000,
0xb80000: 0x10104,
0xc80000: 0x10100,
0xd80000: 0x4000104,
0xe80000: 0x4010104,
0xf80000: 0x4000000,
0x1000000: 0x4010100,
0x1100000: 0x10004,
0x1200000: 0x10000,
0x1300000: 0x4000100,
0x1400000: 0x100,
0x1500000: 0x4010104,
0x1600000: 0x4000004,
0x1700000: 0x0,
0x1800000: 0x4000104,
0x1900000: 0x4000000,
0x1a00000: 0x4,
0x1b00000: 0x10100,
0x1c00000: 0x4010000,
0x1d00000: 0x104,
0x1e00000: 0x10104,
0x1f00000: 0x4010004,
0x1080000: 0x4000000,
0x1180000: 0x104,
0x1280000: 0x4010100,
0x1380000: 0x0,
0x1480000: 0x10004,
0x1580000: 0x4000100,
0x1680000: 0x100,
0x1780000: 0x4010004,
0x1880000: 0x10000,
0x1980000: 0x4010104,
0x1a80000: 0x10104,
0x1b80000: 0x4000004,
0x1c80000: 0x4000104,
0x1d80000: 0x4010000,
0x1e80000: 0x4,
0x1f80000: 0x10100
},
{
0x0: 0x80401000,
0x10000: 0x80001040,
0x20000: 0x401040,
0x30000: 0x80400000,
0x40000: 0x0,
0x50000: 0x401000,
0x60000: 0x80000040,
0x70000: 0x400040,
0x80000: 0x80000000,
0x90000: 0x400000,
0xa0000: 0x40,
0xb0000: 0x80001000,
0xc0000: 0x80400040,
0xd0000: 0x1040,
0xe0000: 0x1000,
0xf0000: 0x80401040,
0x8000: 0x80001040,
0x18000: 0x40,
0x28000: 0x80400040,
0x38000: 0x80001000,
0x48000: 0x401000,
0x58000: 0x80401040,
0x68000: 0x0,
0x78000: 0x80400000,
0x88000: 0x1000,
0x98000: 0x80401000,
0xa8000: 0x400000,
0xb8000: 0x1040,
0xc8000: 0x80000000,
0xd8000: 0x400040,
0xe8000: 0x401040,
0xf8000: 0x80000040,
0x100000: 0x400040,
0x110000: 0x401000,
0x120000: 0x80000040,
0x130000: 0x0,
0x140000: 0x1040,
0x150000: 0x80400040,
0x160000: 0x80401000,
0x170000: 0x80001040,
0x180000: 0x80401040,
0x190000: 0x80000000,
0x1a0000: 0x80400000,
0x1b0000: 0x401040,
0x1c0000: 0x80001000,
0x1d0000: 0x400000,
0x1e0000: 0x40,
0x1f0000: 0x1000,
0x108000: 0x80400000,
0x118000: 0x80401040,
0x128000: 0x0,
0x138000: 0x401000,
0x148000: 0x400040,
0x158000: 0x80000000,
0x168000: 0x80001040,
0x178000: 0x40,
0x188000: 0x80000040,
0x198000: 0x1000,
0x1a8000: 0x80001000,
0x1b8000: 0x80400040,
0x1c8000: 0x1040,
0x1d8000: 0x80401000,
0x1e8000: 0x400000,
0x1f8000: 0x401040
},
{
0x0: 0x80,
0x1000: 0x1040000,
0x2000: 0x40000,
0x3000: 0x20000000,
0x4000: 0x20040080,
0x5000: 0x1000080,
0x6000: 0x21000080,
0x7000: 0x40080,
0x8000: 0x1000000,
0x9000: 0x20040000,
0xa000: 0x20000080,
0xb000: 0x21040080,
0xc000: 0x21040000,
0xd000: 0x0,
0xe000: 0x1040080,
0xf000: 0x21000000,
0x800: 0x1040080,
0x1800: 0x21000080,
0x2800: 0x80,
0x3800: 0x1040000,
0x4800: 0x40000,
0x5800: 0x20040080,
0x6800: 0x21040000,
0x7800: 0x20000000,
0x8800: 0x20040000,
0x9800: 0x0,
0xa800: 0x21040080,
0xb800: 0x1000080,
0xc800: 0x20000080,
0xd800: 0x21000000,
0xe800: 0x1000000,
0xf800: 0x40080,
0x10000: 0x40000,
0x11000: 0x80,
0x12000: 0x20000000,
0x13000: 0x21000080,
0x14000: 0x1000080,
0x15000: 0x21040000,
0x16000: 0x20040080,
0x17000: 0x1000000,
0x18000: 0x21040080,
0x19000: 0x21000000,
0x1a000: 0x1040000,
0x1b000: 0x20040000,
0x1c000: 0x40080,
0x1d000: 0x20000080,
0x1e000: 0x0,
0x1f000: 0x1040080,
0x10800: 0x21000080,
0x11800: 0x1000000,
0x12800: 0x1040000,
0x13800: 0x20040080,
0x14800: 0x20000000,
0x15800: 0x1040080,
0x16800: 0x80,
0x17800: 0x21040000,
0x18800: 0x40080,
0x19800: 0x21040080,
0x1a800: 0x0,
0x1b800: 0x21000000,
0x1c800: 0x1000080,
0x1d800: 0x40000,
0x1e800: 0x20040000,
0x1f800: 0x20000080
},
{
0x0: 0x10000008,
0x100: 0x2000,
0x200: 0x10200000,
0x300: 0x10202008,
0x400: 0x10002000,
0x500: 0x200000,
0x600: 0x200008,
0x700: 0x10000000,
0x800: 0x0,
0x900: 0x10002008,
0xa00: 0x202000,
0xb00: 0x8,
0xc00: 0x10200008,
0xd00: 0x202008,
0xe00: 0x2008,
0xf00: 0x10202000,
0x80: 0x10200000,
0x180: 0x10202008,
0x280: 0x8,
0x380: 0x200000,
0x480: 0x202008,
0x580: 0x10000008,
0x680: 0x10002000,
0x780: 0x2008,
0x880: 0x200008,
0x980: 0x2000,
0xa80: 0x10002008,
0xb80: 0x10200008,
0xc80: 0x0,
0xd80: 0x10202000,
0xe80: 0x202000,
0xf80: 0x10000000,
0x1000: 0x10002000,
0x1100: 0x10200008,
0x1200: 0x10202008,
0x1300: 0x2008,
0x1400: 0x200000,
0x1500: 0x10000000,
0x1600: 0x10000008,
0x1700: 0x202000,
0x1800: 0x202008,
0x1900: 0x0,
0x1a00: 0x8,
0x1b00: 0x10200000,
0x1c00: 0x2000,
0x1d00: 0x10002008,
0x1e00: 0x10202000,
0x1f00: 0x200008,
0x1080: 0x8,
0x1180: 0x202000,
0x1280: 0x200000,
0x1380: 0x10000008,
0x1480: 0x10002000,
0x1580: 0x2008,
0x1680: 0x10202008,
0x1780: 0x10200000,
0x1880: 0x10202000,
0x1980: 0x10200008,
0x1a80: 0x2000,
0x1b80: 0x202008,
0x1c80: 0x200008,
0x1d80: 0x0,
0x1e80: 0x10000000,
0x1f80: 0x10002008
},
{
0x0: 0x100000,
0x10: 0x2000401,
0x20: 0x400,
0x30: 0x100401,
0x40: 0x2100401,
0x50: 0x0,
0x60: 0x1,
0x70: 0x2100001,
0x80: 0x2000400,
0x90: 0x100001,
0xa0: 0x2000001,
0xb0: 0x2100400,
0xc0: 0x2100000,
0xd0: 0x401,
0xe0: 0x100400,
0xf0: 0x2000000,
0x8: 0x2100001,
0x18: 0x0,
0x28: 0x2000401,
0x38: 0x2100400,
0x48: 0x100000,
0x58: 0x2000001,
0x68: 0x2000000,
0x78: 0x401,
0x88: 0x100401,
0x98: 0x2000400,
0xa8: 0x2100000,
0xb8: 0x100001,
0xc8: 0x400,
0xd8: 0x2100401,
0xe8: 0x1,
0xf8: 0x100400,
0x100: 0x2000000,
0x110: 0x100000,
0x120: 0x2000401,
0x130: 0x2100001,
0x140: 0x100001,
0x150: 0x2000400,
0x160: 0x2100400,
0x170: 0x100401,
0x180: 0x401,
0x190: 0x2100401,
0x1a0: 0x100400,
0x1b0: 0x1,
0x1c0: 0x0,
0x1d0: 0x2100000,
0x1e0: 0x2000001,
0x1f0: 0x400,
0x108: 0x100400,
0x118: 0x2000401,
0x128: 0x2100001,
0x138: 0x1,
0x148: 0x2000000,
0x158: 0x100000,
0x168: 0x401,
0x178: 0x2100400,
0x188: 0x2000001,
0x198: 0x2100000,
0x1a8: 0x0,
0x1b8: 0x2100401,
0x1c8: 0x100401,
0x1d8: 0x400,
0x1e8: 0x2000400,
0x1f8: 0x100001
},
{
0x0: 0x8000820,
0x1: 0x20000,
0x2: 0x8000000,
0x3: 0x20,
0x4: 0x20020,
0x5: 0x8020820,
0x6: 0x8020800,
0x7: 0x800,
0x8: 0x8020000,
0x9: 0x8000800,
0xa: 0x20800,
0xb: 0x8020020,
0xc: 0x820,
0xd: 0x0,
0xe: 0x8000020,
0xf: 0x20820,
0x80000000: 0x800,
0x80000001: 0x8020820,
0x80000002: 0x8000820,
0x80000003: 0x8000000,
0x80000004: 0x8020000,
0x80000005: 0x20800,
0x80000006: 0x20820,
0x80000007: 0x20,
0x80000008: 0x8000020,
0x80000009: 0x820,
0x8000000a: 0x20020,
0x8000000b: 0x8020800,
0x8000000c: 0x0,
0x8000000d: 0x8020020,
0x8000000e: 0x8000800,
0x8000000f: 0x20000,
0x10: 0x20820,
0x11: 0x8020800,
0x12: 0x20,
0x13: 0x800,
0x14: 0x8000800,
0x15: 0x8000020,
0x16: 0x8020020,
0x17: 0x20000,
0x18: 0x0,
0x19: 0x20020,
0x1a: 0x8020000,
0x1b: 0x8000820,
0x1c: 0x8020820,
0x1d: 0x20800,
0x1e: 0x820,
0x1f: 0x8000000,
0x80000010: 0x20000,
0x80000011: 0x800,
0x80000012: 0x8020020,
0x80000013: 0x20820,
0x80000014: 0x20,
0x80000015: 0x8020000,
0x80000016: 0x8000000,
0x80000017: 0x8000820,
0x80000018: 0x8020820,
0x80000019: 0x8000020,
0x8000001a: 0x8000800,
0x8000001b: 0x0,
0x8000001c: 0x20800,
0x8000001d: 0x820,
0x8000001e: 0x20020,
0x8000001f: 0x8020800
}
];
// Masks that select the SBOX input
var SBOX_MASK = [
0xf8000001, 0x1f800000, 0x01f80000, 0x001f8000,
0x0001f800, 0x00001f80, 0x000001f8, 0x8000001f
];
/**
* DES block cipher algorithm.
*/
var DES = C_algo.DES = BlockCipher.extend({
_doReset: function () {
// Shortcuts
var key = this._key;
var keyWords = key.words;
// Select 56 bits according to PC1
var keyBits = [];
for (var i = 0; i < 56; i++) {
var keyBitPos = PC1[i] - 1;
keyBits[i] = (keyWords[keyBitPos >>> 5] >>> (31 - keyBitPos % 32)) & 1;
}
// Assemble 16 subkeys
var subKeys = this._subKeys = [];
for (var nSubKey = 0; nSubKey < 16; nSubKey++) {
// Create subkey
var subKey = subKeys[nSubKey] = [];
// Shortcut
var bitShift = BIT_SHIFTS[nSubKey];
// Select 48 bits according to PC2
for (var i = 0; i < 24; i++) {
// Select from the left 28 key bits
subKey[(i / 6) | 0] |= keyBits[((PC2[i] - 1) + bitShift) % 28] << (31 - i % 6);
// Select from the right 28 key bits
subKey[4 + ((i / 6) | 0)] |= keyBits[28 + (((PC2[i + 24] - 1) + bitShift) % 28)] << (31 - i % 6);
}
// Since each subkey is applied to an expanded 32-bit input,
// the subkey can be broken into 8 values scaled to 32-bits,
// which allows the key to be used without expansion
subKey[0] = (subKey[0] << 1) | (subKey[0] >>> 31);
for (var i = 1; i < 7; i++) {
subKey[i] = subKey[i] >>> ((i - 1) * 4 + 3);
}
subKey[7] = (subKey[7] << 5) | (subKey[7] >>> 27);
}
// Compute inverse subkeys
var invSubKeys = this._invSubKeys = [];
for (var i = 0; i < 16; i++) {
invSubKeys[i] = subKeys[15 - i];
}
},
encryptBlock: function (M, offset) {
this._doCryptBlock(M, offset, this._subKeys);
},
decryptBlock: function (M, offset) {
this._doCryptBlock(M, offset, this._invSubKeys);
},
_doCryptBlock: function (M, offset, subKeys) {
// Get input
this._lBlock = M[offset];
this._rBlock = M[offset + 1];
// Initial permutation
exchangeLR.call(this, 4, 0x0f0f0f0f);
exchangeLR.call(this, 16, 0x0000ffff);
exchangeRL.call(this, 2, 0x33333333);
exchangeRL.call(this, 8, 0x00ff00ff);
exchangeLR.call(this, 1, 0x55555555);
// Rounds
for (var round = 0; round < 16; round++) {
// Shortcuts
var subKey = subKeys[round];
var lBlock = this._lBlock;
var rBlock = this._rBlock;
// Feistel function
var f = 0;
for (var i = 0; i < 8; i++) {
f |= SBOX_P[i][((rBlock ^ subKey[i]) & SBOX_MASK[i]) >>> 0];
}
this._lBlock = rBlock;
this._rBlock = lBlock ^ f;
}
// Undo swap from last round
var t = this._lBlock;
this._lBlock = this._rBlock;
this._rBlock = t;
// Final permutation
exchangeLR.call(this, 1, 0x55555555);
exchangeRL.call(this, 8, 0x00ff00ff);
exchangeRL.call(this, 2, 0x33333333);
exchangeLR.call(this, 16, 0x0000ffff);
exchangeLR.call(this, 4, 0x0f0f0f0f);
// Set output
M[offset] = this._lBlock;
M[offset + 1] = this._rBlock;
},
keySize: 64/32,
ivSize: 64/32,
blockSize: 64/32
});
// Swap bits across the left and right words
function exchangeLR(offset, mask) {
var t = ((this._lBlock >>> offset) ^ this._rBlock) & mask;
this._rBlock ^= t;
this._lBlock ^= t << offset;
}
function exchangeRL(offset, mask) {
var t = ((this._rBlock >>> offset) ^ this._lBlock) & mask;
this._lBlock ^= t;
this._rBlock ^= t << offset;
}
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.DES.encrypt(message, key, cfg);
* var plaintext = CryptoJS.DES.decrypt(ciphertext, key, cfg);
*/
C.DES = BlockCipher._createHelper(DES);
/**
* Triple-DES block cipher algorithm.
*/
var TripleDES = C_algo.TripleDES = BlockCipher.extend({
_doReset: function () {
// Shortcuts
var key = this._key;
var keyWords = key.words;
// Create DES instances
this._des1 = DES.createEncryptor(WordArray.create(keyWords.slice(0, 2)));
this._des2 = DES.createEncryptor(WordArray.create(keyWords.slice(2, 4)));
this._des3 = DES.createEncryptor(WordArray.create(keyWords.slice(4, 6)));
},
encryptBlock: function (M, offset) {
this._des1.encryptBlock(M, offset);
this._des2.decryptBlock(M, offset);
this._des3.encryptBlock(M, offset);
},
decryptBlock: function (M, offset) {
this._des3.decryptBlock(M, offset);
this._des2.encryptBlock(M, offset);
this._des1.decryptBlock(M, offset);
},
keySize: 192/32,
ivSize: 64/32,
blockSize: 64/32
});
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.TripleDES.encrypt(message, key, cfg);
* var plaintext = CryptoJS.TripleDES.decrypt(ciphertext, key, cfg);
*/
C.TripleDES = BlockCipher._createHelper(TripleDES);
}());
return CryptoJS.TripleDES;
}));
/***/ }),
/* 46 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(6), __webpack_require__(7), __webpack_require__(4), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./enc-base64", "./md5", "./evpkdf", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var StreamCipher = C_lib.StreamCipher;
var C_algo = C.algo;
/**
* RC4 stream cipher algorithm.
*/
var RC4 = C_algo.RC4 = StreamCipher.extend({
_doReset: function () {
// Shortcuts
var key = this._key;
var keyWords = key.words;
var keySigBytes = key.sigBytes;
// Init sbox
var S = this._S = [];
for (var i = 0; i < 256; i++) {
S[i] = i;
}
// Key setup
for (var i = 0, j = 0; i < 256; i++) {
var keyByteIndex = i % keySigBytes;
var keyByte = (keyWords[keyByteIndex >>> 2] >>> (24 - (keyByteIndex % 4) * 8)) & 0xff;
j = (j + S[i] + keyByte) % 256;
// Swap
var t = S[i];
S[i] = S[j];
S[j] = t;
}
// Counters
this._i = this._j = 0;
},
_doProcessBlock: function (M, offset) {
M[offset] ^= generateKeystreamWord.call(this);
},
keySize: 256/32,
ivSize: 0
});
function generateKeystreamWord() {
// Shortcuts
var S = this._S;
var i = this._i;
var j = this._j;
// Generate keystream word
var keystreamWord = 0;
for (var n = 0; n < 4; n++) {
i = (i + 1) % 256;
j = (j + S[i]) % 256;
// Swap
var t = S[i];
S[i] = S[j];
S[j] = t;
keystreamWord |= S[(S[i] + S[j]) % 256] << (24 - n * 8);
}
// Update counters
this._i = i;
this._j = j;
return keystreamWord;
}
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.RC4.encrypt(message, key, cfg);
* var plaintext = CryptoJS.RC4.decrypt(ciphertext, key, cfg);
*/
C.RC4 = StreamCipher._createHelper(RC4);
/**
* Modified RC4 stream cipher algorithm.
*/
var RC4Drop = C_algo.RC4Drop = RC4.extend({
/**
* Configuration options.
*
* @property {number} drop The number of keystream words to drop. Default 192
*/
cfg: RC4.cfg.extend({
drop: 192
}),
_doReset: function () {
RC4._doReset.call(this);
// Drop
for (var i = this.cfg.drop; i > 0; i--) {
generateKeystreamWord.call(this);
}
}
});
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.RC4Drop.encrypt(message, key, cfg);
* var plaintext = CryptoJS.RC4Drop.decrypt(ciphertext, key, cfg);
*/
C.RC4Drop = StreamCipher._createHelper(RC4Drop);
}());
return CryptoJS.RC4;
}));
/***/ }),
/* 47 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(6), __webpack_require__(7), __webpack_require__(4), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./enc-base64", "./md5", "./evpkdf", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var StreamCipher = C_lib.StreamCipher;
var C_algo = C.algo;
// Reusable objects
var S = [];
var C_ = [];
var G = [];
/**
* Rabbit stream cipher algorithm
*/
var Rabbit = C_algo.Rabbit = StreamCipher.extend({
_doReset: function () {
// Shortcuts
var K = this._key.words;
var iv = this.cfg.iv;
// Swap endian
for (var i = 0; i < 4; i++) {
K[i] = (((K[i] << 8) | (K[i] >>> 24)) & 0x00ff00ff) |
(((K[i] << 24) | (K[i] >>> 8)) & 0xff00ff00);
}
// Generate initial state values
var X = this._X = [
K[0], (K[3] << 16) | (K[2] >>> 16),
K[1], (K[0] << 16) | (K[3] >>> 16),
K[2], (K[1] << 16) | (K[0] >>> 16),
K[3], (K[2] << 16) | (K[1] >>> 16)
];
// Generate initial counter values
var C = this._C = [
(K[2] << 16) | (K[2] >>> 16), (K[0] & 0xffff0000) | (K[1] & 0x0000ffff),
(K[3] << 16) | (K[3] >>> 16), (K[1] & 0xffff0000) | (K[2] & 0x0000ffff),
(K[0] << 16) | (K[0] >>> 16), (K[2] & 0xffff0000) | (K[3] & 0x0000ffff),
(K[1] << 16) | (K[1] >>> 16), (K[3] & 0xffff0000) | (K[0] & 0x0000ffff)
];
// Carry bit
this._b = 0;
// Iterate the system four times
for (var i = 0; i < 4; i++) {
nextState.call(this);
}
// Modify the counters
for (var i = 0; i < 8; i++) {
C[i] ^= X[(i + 4) & 7];
}
// IV setup
if (iv) {
// Shortcuts
var IV = iv.words;
var IV_0 = IV[0];
var IV_1 = IV[1];
// Generate four subvectors
var i0 = (((IV_0 << 8) | (IV_0 >>> 24)) & 0x00ff00ff) | (((IV_0 << 24) | (IV_0 >>> 8)) & 0xff00ff00);
var i2 = (((IV_1 << 8) | (IV_1 >>> 24)) & 0x00ff00ff) | (((IV_1 << 24) | (IV_1 >>> 8)) & 0xff00ff00);
var i1 = (i0 >>> 16) | (i2 & 0xffff0000);
var i3 = (i2 << 16) | (i0 & 0x0000ffff);
// Modify counter values
C[0] ^= i0;
C[1] ^= i1;
C[2] ^= i2;
C[3] ^= i3;
C[4] ^= i0;
C[5] ^= i1;
C[6] ^= i2;
C[7] ^= i3;
// Iterate the system four times
for (var i = 0; i < 4; i++) {
nextState.call(this);
}
}
},
_doProcessBlock: function (M, offset) {
// Shortcut
var X = this._X;
// Iterate the system
nextState.call(this);
// Generate four keystream words
S[0] = X[0] ^ (X[5] >>> 16) ^ (X[3] << 16);
S[1] = X[2] ^ (X[7] >>> 16) ^ (X[5] << 16);
S[2] = X[4] ^ (X[1] >>> 16) ^ (X[7] << 16);
S[3] = X[6] ^ (X[3] >>> 16) ^ (X[1] << 16);
for (var i = 0; i < 4; i++) {
// Swap endian
S[i] = (((S[i] << 8) | (S[i] >>> 24)) & 0x00ff00ff) |
(((S[i] << 24) | (S[i] >>> 8)) & 0xff00ff00);
// Encrypt
M[offset + i] ^= S[i];
}
},
blockSize: 128/32,
ivSize: 64/32
});
function nextState() {
// Shortcuts
var X = this._X;
var C = this._C;
// Save old counter values
for (var i = 0; i < 8; i++) {
C_[i] = C[i];
}
// Calculate new counter values
C[0] = (C[0] + 0x4d34d34d + this._b) | 0;
C[1] = (C[1] + 0xd34d34d3 + ((C[0] >>> 0) < (C_[0] >>> 0) ? 1 : 0)) | 0;
C[2] = (C[2] + 0x34d34d34 + ((C[1] >>> 0) < (C_[1] >>> 0) ? 1 : 0)) | 0;
C[3] = (C[3] + 0x4d34d34d + ((C[2] >>> 0) < (C_[2] >>> 0) ? 1 : 0)) | 0;
C[4] = (C[4] + 0xd34d34d3 + ((C[3] >>> 0) < (C_[3] >>> 0) ? 1 : 0)) | 0;
C[5] = (C[5] + 0x34d34d34 + ((C[4] >>> 0) < (C_[4] >>> 0) ? 1 : 0)) | 0;
C[6] = (C[6] + 0x4d34d34d + ((C[5] >>> 0) < (C_[5] >>> 0) ? 1 : 0)) | 0;
C[7] = (C[7] + 0xd34d34d3 + ((C[6] >>> 0) < (C_[6] >>> 0) ? 1 : 0)) | 0;
this._b = (C[7] >>> 0) < (C_[7] >>> 0) ? 1 : 0;
// Calculate the g-values
for (var i = 0; i < 8; i++) {
var gx = X[i] + C[i];
// Construct high and low argument for squaring
var ga = gx & 0xffff;
var gb = gx >>> 16;
// Calculate high and low result of squaring
var gh = ((((ga * ga) >>> 17) + ga * gb) >>> 15) + gb * gb;
var gl = (((gx & 0xffff0000) * gx) | 0) + (((gx & 0x0000ffff) * gx) | 0);
// High XOR low
G[i] = gh ^ gl;
}
// Calculate new state values
X[0] = (G[0] + ((G[7] << 16) | (G[7] >>> 16)) + ((G[6] << 16) | (G[6] >>> 16))) | 0;
X[1] = (G[1] + ((G[0] << 8) | (G[0] >>> 24)) + G[7]) | 0;
X[2] = (G[2] + ((G[1] << 16) | (G[1] >>> 16)) + ((G[0] << 16) | (G[0] >>> 16))) | 0;
X[3] = (G[3] + ((G[2] << 8) | (G[2] >>> 24)) + G[1]) | 0;
X[4] = (G[4] + ((G[3] << 16) | (G[3] >>> 16)) + ((G[2] << 16) | (G[2] >>> 16))) | 0;
X[5] = (G[5] + ((G[4] << 8) | (G[4] >>> 24)) + G[3]) | 0;
X[6] = (G[6] + ((G[5] << 16) | (G[5] >>> 16)) + ((G[4] << 16) | (G[4] >>> 16))) | 0;
X[7] = (G[7] + ((G[6] << 8) | (G[6] >>> 24)) + G[5]) | 0;
}
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.Rabbit.encrypt(message, key, cfg);
* var plaintext = CryptoJS.Rabbit.decrypt(ciphertext, key, cfg);
*/
C.Rabbit = StreamCipher._createHelper(Rabbit);
}());
return CryptoJS.Rabbit;
}));
/***/ }),
/* 48 */
/***/ (function(module, exports, __webpack_require__) {
;(function (root, factory, undef) {
if (true) {
// CommonJS
module.exports = exports = factory(__webpack_require__(0), __webpack_require__(6), __webpack_require__(7), __webpack_require__(4), __webpack_require__(1));
}
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./enc-base64", "./md5", "./evpkdf", "./cipher-core"], factory);
}
else {
// Global (browser)
factory(root.CryptoJS);
}
}(this, function (CryptoJS) {
(function () {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var StreamCipher = C_lib.StreamCipher;
var C_algo = C.algo;
// Reusable objects
var S = [];
var C_ = [];
var G = [];
/**
* Rabbit stream cipher algorithm.
*
* This is a legacy version that neglected to convert the key to little-endian.
* This error doesn't affect the cipher's security,
* but it does affect its compatibility with other implementations.
*/
var RabbitLegacy = C_algo.RabbitLegacy = StreamCipher.extend({
_doReset: function () {
// Shortcuts
var K = this._key.words;
var iv = this.cfg.iv;
// Generate initial state values
var X = this._X = [
K[0], (K[3] << 16) | (K[2] >>> 16),
K[1], (K[0] << 16) | (K[3] >>> 16),
K[2], (K[1] << 16) | (K[0] >>> 16),
K[3], (K[2] << 16) | (K[1] >>> 16)
];
// Generate initial counter values
var C = this._C = [
(K[2] << 16) | (K[2] >>> 16), (K[0] & 0xffff0000) | (K[1] & 0x0000ffff),
(K[3] << 16) | (K[3] >>> 16), (K[1] & 0xffff0000) | (K[2] & 0x0000ffff),
(K[0] << 16) | (K[0] >>> 16), (K[2] & 0xffff0000) | (K[3] & 0x0000ffff),
(K[1] << 16) | (K[1] >>> 16), (K[3] & 0xffff0000) | (K[0] & 0x0000ffff)
];
// Carry bit
this._b = 0;
// Iterate the system four times
for (var i = 0; i < 4; i++) {
nextState.call(this);
}
// Modify the counters
for (var i = 0; i < 8; i++) {
C[i] ^= X[(i + 4) & 7];
}
// IV setup
if (iv) {
// Shortcuts
var IV = iv.words;
var IV_0 = IV[0];
var IV_1 = IV[1];
// Generate four subvectors
var i0 = (((IV_0 << 8) | (IV_0 >>> 24)) & 0x00ff00ff) | (((IV_0 << 24) | (IV_0 >>> 8)) & 0xff00ff00);
var i2 = (((IV_1 << 8) | (IV_1 >>> 24)) & 0x00ff00ff) | (((IV_1 << 24) | (IV_1 >>> 8)) & 0xff00ff00);
var i1 = (i0 >>> 16) | (i2 & 0xffff0000);
var i3 = (i2 << 16) | (i0 & 0x0000ffff);
// Modify counter values
C[0] ^= i0;
C[1] ^= i1;
C[2] ^= i2;
C[3] ^= i3;
C[4] ^= i0;
C[5] ^= i1;
C[6] ^= i2;
C[7] ^= i3;
// Iterate the system four times
for (var i = 0; i < 4; i++) {
nextState.call(this);
}
}
},
_doProcessBlock: function (M, offset) {
// Shortcut
var X = this._X;
// Iterate the system
nextState.call(this);
// Generate four keystream words
S[0] = X[0] ^ (X[5] >>> 16) ^ (X[3] << 16);
S[1] = X[2] ^ (X[7] >>> 16) ^ (X[5] << 16);
S[2] = X[4] ^ (X[1] >>> 16) ^ (X[7] << 16);
S[3] = X[6] ^ (X[3] >>> 16) ^ (X[1] << 16);
for (var i = 0; i < 4; i++) {
// Swap endian
S[i] = (((S[i] << 8) | (S[i] >>> 24)) & 0x00ff00ff) |
(((S[i] << 24) | (S[i] >>> 8)) & 0xff00ff00);
// Encrypt
M[offset + i] ^= S[i];
}
},
blockSize: 128/32,
ivSize: 64/32
});
function nextState() {
// Shortcuts
var X = this._X;
var C = this._C;
// Save old counter values
for (var i = 0; i < 8; i++) {
C_[i] = C[i];
}
// Calculate new counter values
C[0] = (C[0] + 0x4d34d34d + this._b) | 0;
C[1] = (C[1] + 0xd34d34d3 + ((C[0] >>> 0) < (C_[0] >>> 0) ? 1 : 0)) | 0;
C[2] = (C[2] + 0x34d34d34 + ((C[1] >>> 0) < (C_[1] >>> 0) ? 1 : 0)) | 0;
C[3] = (C[3] + 0x4d34d34d + ((C[2] >>> 0) < (C_[2] >>> 0) ? 1 : 0)) | 0;
C[4] = (C[4] + 0xd34d34d3 + ((C[3] >>> 0) < (C_[3] >>> 0) ? 1 : 0)) | 0;
C[5] = (C[5] + 0x34d34d34 + ((C[4] >>> 0) < (C_[4] >>> 0) ? 1 : 0)) | 0;
C[6] = (C[6] + 0x4d34d34d + ((C[5] >>> 0) < (C_[5] >>> 0) ? 1 : 0)) | 0;
C[7] = (C[7] + 0xd34d34d3 + ((C[6] >>> 0) < (C_[6] >>> 0) ? 1 : 0)) | 0;
this._b = (C[7] >>> 0) < (C_[7] >>> 0) ? 1 : 0;
// Calculate the g-values
for (var i = 0; i < 8; i++) {
var gx = X[i] + C[i];
// Construct high and low argument for squaring
var ga = gx & 0xffff;
var gb = gx >>> 16;
// Calculate high and low result of squaring
var gh = ((((ga * ga) >>> 17) + ga * gb) >>> 15) + gb * gb;
var gl = (((gx & 0xffff0000) * gx) | 0) + (((gx & 0x0000ffff) * gx) | 0);
// High XOR low
G[i] = gh ^ gl;
}
// Calculate new state values
X[0] = (G[0] + ((G[7] << 16) | (G[7] >>> 16)) + ((G[6] << 16) | (G[6] >>> 16))) | 0;
X[1] = (G[1] + ((G[0] << 8) | (G[0] >>> 24)) + G[7]) | 0;
X[2] = (G[2] + ((G[1] << 16) | (G[1] >>> 16)) + ((G[0] << 16) | (G[0] >>> 16))) | 0;
X[3] = (G[3] + ((G[2] << 8) | (G[2] >>> 24)) + G[1]) | 0;
X[4] = (G[4] + ((G[3] << 16) | (G[3] >>> 16)) + ((G[2] << 16) | (G[2] >>> 16))) | 0;
X[5] = (G[5] + ((G[4] << 8) | (G[4] >>> 24)) + G[3]) | 0;
X[6] = (G[6] + ((G[5] << 16) | (G[5] >>> 16)) + ((G[4] << 16) | (G[4] >>> 16))) | 0;
X[7] = (G[7] + ((G[6] << 8) | (G[6] >>> 24)) + G[5]) | 0;
}
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.RabbitLegacy.encrypt(message, key, cfg);
* var plaintext = CryptoJS.RabbitLegacy.decrypt(ciphertext, key, cfg);
*/
C.RabbitLegacy = StreamCipher._createHelper(RabbitLegacy);
}());
return CryptoJS.RabbitLegacy;
}));
/***/ }),
/* 49 */
/***/ (function(module, exports) {
var INT_LENGTH = 12;
var BYTE_LENGTH = 48;
var RADIX = 3;
/// hex representation of (3^242)/2
var HALF_3 = new Uint32Array([
0xa5ce8964,
0x9f007669,
0x1484504f,
0x3ade00d9,
0x0c24486e,
0x50979d57,
0x79a4c702,
0x48bbae36,
0xa9f6808b,
0xaa06a805,
0xa87fabdf,
0x5e69ebef
]);
var clone_uint32Array = function(sourceArray) {
var destination = new ArrayBuffer(sourceArray.byteLength);
new Uint32Array(destination).set(new Uint32Array(sourceArray));
return destination;
};
var ta_slice = function(array) {
if (array.slice !== undefined) {
return array.slice();
}
return clone_uint32Array(array);
};
var ta_reverse = function(array) {
if (array.reverse !== undefined) {
array.reverse();
return;
}
var i = 0,
n = array.length,
middle = Math.floor(n / 2),
temp = null;
for (; i < middle; i += 1) {
temp = array[i];
array[i] = array[n - 1 - i];
array[n - 1 - i] = temp;
}
};
/// negates the (unsigned) input array
var bigint_not = function(arr) {
for (var i = 0; i < arr.length; i++) {
arr[i] = (~arr[i]) >>> 0;
}
};
/// rshift that works with up to 53
/// JS's shift operators only work on 32 bit integers
/// ours is up to 33 or 34 bits though, so
/// we need to implement shifting manually
var rshift = function(number, shift) {
return (number / Math.pow(2, shift)) >>> 0;
};
/// swaps endianness
var swap32 = function(val) {
return ((val & 0xFF) << 24) |
((val & 0xFF00) << 8) |
((val >> 8) & 0xFF00) |
((val >> 24) & 0xFF);
}
/// add with carry
var full_add = function(lh, rh, carry) {
var v = lh + rh;
var l = (rshift(v, 32)) & 0xFFFFFFFF;
var r = (v & 0xFFFFFFFF) >>> 0;
var carry1 = l != 0;
if (carry) {
v = r + 1;
}
l = (rshift(v, 32)) & 0xFFFFFFFF;
r = (v & 0xFFFFFFFF) >>> 0;
var carry2 = l != 0;
return [r, carry1 || carry2];
};
/// subtracts rh from base
var bigint_sub = function(base, rh) {
var noborrow = true;
for (var i = 0; i < base.length; i++) {
var vc = full_add(base[i], (~rh[i] >>> 0), noborrow);
base[i] = vc[0];
noborrow = vc[1];
}
if (!noborrow) {
throw "noborrow";
}
};
/// compares two (unsigned) big integers
var bigint_cmp = function(lh, rh) {
for (var i = lh.length; i-- > 0;) {
var a = lh[i] >>> 0;
var b = rh[i] >>> 0;
if (a < b) {
return -1;
} else if (a > b) {
return 1;
}
}
return 0;
};
/// adds rh to base in place
var bigint_add = function(base, rh) {
var carry = false;
for (var i = 0; i < base.length; i++) {
var vc = full_add(base[i], rh[i], carry);
base[i] = vc[0];
carry = vc[1];
}
};
/// adds a small (i.e. <32bit) number to base
var bigint_add_small = function(base, other) {
var vc = full_add(base[0], other, false);
base[0] = vc[0];
var carry = vc[1];
var i = 1;
while (carry && i < base.length) {
var vc = full_add(base[i], 0, carry);
base[i] = vc[0];
carry = vc[1];
i += 1;
}
return i;
};
/// converts the given byte array to trits
var words_to_trits = function(words) {
if (words.length != INT_LENGTH) {
throw "Invalid words length";
}
var trits = new Int8Array(243);
var base = new Uint32Array(words);
ta_reverse(base);
var flip_trits = false;
if (base[INT_LENGTH - 1] >> 31 == 0) {
// positive two's complement number.
// add HALF_3 to move it to the right place.
bigint_add(base, HALF_3);
} else {
// negative number.
bigint_not(base);
if (bigint_cmp(base, HALF_3) > 0) {
bigint_sub(base, HALF_3);
flip_trits = true;
} else {
/// bigint is between (unsigned) HALF_3 and (2**384 - 3**242/2).
bigint_add_small(base, 1);
var tmp = ta_slice(HALF_3);
bigint_sub(tmp, base);
base = tmp;
}
}
var rem = 0;
for (var i = 0; i < 242; i++) {
rem = 0;
for (var j = INT_LENGTH - 1; j >= 0; j--) {
var lhs = (rem != 0 ? rem * 0xFFFFFFFF + rem : 0) + base[j];
var rhs = RADIX;
var q = (lhs / rhs) >>> 0;
var r = (lhs % rhs) >>> 0;
base[j] = q;
rem = r;
}
trits[i] = rem - 1;
}
if (flip_trits) {
for (var i = 0; i < trits.length; i++) {
trits[i] = -trits[i];
}
}
return trits;
}
var is_null = function(arr) {
for (var i = 0; i < arr.length; i++) {
if (arr[i] != 0) {
return false;
break;
}
}
return true;
}
var trits_to_words = function(trits) {
if (trits.length != 243) {
throw "Invalid trits length";
}
var base = new Uint32Array(INT_LENGTH);
if (trits.slice(0, 242).every(function(a) {
a == -1
})) {
base = ta_slice(HALF_3);
bigint_not(base);
bigint_add_small(base, 1);
} else {
var size = 1;
for (var i = trits.length - 1; i-- > 0;) {
var trit = trits[i] + 1;
//multiply by radix
{
var sz = size;
var carry = 0;
for (var j = 0; j < sz; j++) {
var v = base[j] * RADIX + carry;
carry = rshift(v, 32);
base[j] = (v & 0xFFFFFFFF) >>> 0;
}
if (carry > 0) {
base[sz] = carry;
size += 1;
}
}
//addition
{
var sz = bigint_add_small(base, trit);
if (sz > size) {
size = sz;
}
}
}
if (!is_null(base)) {
if (bigint_cmp(HALF_3, base) <= 0) {
// base >= HALF_3
// just do base - HALF_3
bigint_sub(base, HALF_3);
} else {
// base < HALF_3
// so we need to transform it to a two's complement representation
// of (base - HALF_3).
// as we don't have a wrapping (-), we need to use some bit magic
var tmp = ta_slice(HALF_3);
bigint_sub(tmp, base);
bigint_not(tmp);
bigint_add_small(tmp, 1);
base = tmp;
}
}
}
ta_reverse(base);
for (var i = 0; i < base.length; i++) {
base[i] = swap32(base[i]);
}
return base;
};
module.exports = {
trits_to_words: trits_to_words,
words_to_trits: words_to_trits
};
/***/ }),
/* 50 */
/***/ (function(module, exports, __webpack_require__) {
var Curl = __webpack_require__(3);
var Converter = __webpack_require__(2);
var HMAC_ROUNDS = 27;
function hmac(key) {
this._key = Converter.trits(key);
}
hmac.prototype.addHMAC = function(bundle) {
var curl = new Curl(HMAC_ROUNDS);
var key = this._key;
for(var i = 0; i < bundle.bundle.length; i++) {
if (bundle.bundle[i].value > 0) {
var bundleHashTrits = Converter.trits(bundle.bundle[i].bundle);
var hmac = new Int8Array(243);
curl.initialize();
curl.absorb(key);
curl.absorb(bundleHashTrits);
curl.squeeze(hmac);
var hmacTrytes = Converter.trytes(hmac);
bundle.bundle[i].signatureMessageFragment = hmacTrytes + bundle.bundle[i].signatureMessageFragment.substring(81, 2187);
}
}
}
module.exports = hmac;
/***/ }),
/* 51 */
/***/ (function(module, exports, __webpack_require__) {
var Signing = __webpack_require__(11);
var Converter = __webpack_require__(2);
var Kerl = __webpack_require__(5);
var Curl = __webpack_require__(3);
var Bundle = __webpack_require__(9);
var Utils = __webpack_require__(17);
var inputValidator = __webpack_require__(12);
var errors = __webpack_require__(16);
var Address = __webpack_require__(53);
function Multisig(provider) {
this._makeRequest = provider;
}
/**
* Gets the key value of a seed
*
* @method getKey
* @param {string} seed
* @param {int} index
* @param {int} security Security level to be used for the private key / address. Can be 1, 2 or 3
* @returns {string} digest trytes
**/
Multisig.getKey = function(seed, index, security) {
return Converter.trytes(Signing.key(Converter.trits(seed), index, security));
}
/**
* Gets the digest value of a seed
*
* @method getDigest
* @param {string} seed
* @param {int} index
* @param {int} security Security level to be used for the private key / address. Can be 1, 2 or 3
* @returns {string} digest trytes
**/
Multisig.getDigest = function(seed, index, security) {
var key = Signing.key(Converter.trits(seed), index, security);
return Converter.trytes(Signing.digests(key));
}
/**
* Multisig address constructor
*/
Multisig.address = Address;
/**
* Validates a generated multisig address
*
* @method validateAddress
* @param {string} multisigAddress
* @param {array} digests
* @returns {bool}
**/
Multisig.validateAddress = function(multisigAddress, digests) {
var kerl = new Kerl();
// initialize Kerl with the provided state
kerl.initialize();
// Absorb all key digests
digests.forEach(function(keyDigest) {
var trits = Converter.trits(keyDigest);
kerl.absorb(Converter.trits(keyDigest), 0, trits.length);
})
// Squeeze address trits
var addressTrits = [];
kerl.squeeze(addressTrits, 0, Curl.HASH_LENGTH);
// Convert trits into trytes and return the address
return Converter.trytes(addressTrits) === multisigAddress;
}
/**
* Prepares transfer by generating the bundle with the corresponding cosigner transactions
* Does not contain signatures
*
* @method initiateTransfer
* @param {object} input the input addresses as well as the securitySum, and balance
* where `address` is the input multisig address
* and `securitySum` is the sum of security levels used by all co-signers
* and `balance` is the expected balance, if you wish to override getBalances
* @param {string} remainderAddress Has to be generated by the cosigners before initiating the transfer, can be null if fully spent
* @param {object} transfers
* @param {function} callback
* @returns {array} Array of transaction objects
**/
Multisig.initiateTransfer = function(input, remainderAddress, transfers, callback) {
var self = this;
// If message or tag is not supplied, provide it
// Also remove the checksum of the address if it's there
transfers.forEach(function(thisTransfer) {
thisTransfer.message = thisTransfer.message ? thisTransfer.message : '';
thisTransfer.tag = thisTransfer.tag ? thisTransfer.tag : '';
thisTransfer.obsoleteTag = thisTransfer.obsoleteTag ? thisTransfer.obsoleteTag : '';
thisTransfer.address = Utils.noChecksum(thisTransfer.address);
})
// Input validation of transfers object
if (!inputValidator.isTransfersArray(transfers)) {
return callback(errors.invalidTransfers());
}
// check if int
if (!inputValidator.isValue(input.securitySum)) {
return callback(errors.invalidInputs());
}
// validate input address
if (!inputValidator.isAddress(input.address)) {
return callback(errors.invalidTrytes());
}
// validate remainder address
if (remainderAddress && !inputValidator.isAddress(remainderAddress)) {
return callback(errors.invalidTrytes());
}
// Create a new bundle
var bundle = new Bundle();
var totalValue = 0;
var signatureFragments = [];
var tag;
//
// Iterate over all transfers, get totalValue
// and prepare the signatureFragments, message and tag
//
for (var i = 0; i < transfers.length; i++) {
var signatureMessageLength = 1;
// If message longer than 2187 trytes, increase signatureMessageLength (add multiple transactions)
if (transfers[i].message.length > 2187) {
// Get total length, message / maxLength (2187 trytes)
signatureMessageLength += Math.floor(transfers[i].message.length / 2187);
var msgCopy = transfers[i].message;
// While there is still a message, copy it
while (msgCopy) {
var fragment = msgCopy.slice(0, 2187);
msgCopy = msgCopy.slice(2187, msgCopy.length);
// Pad remainder of fragment
for (var j = 0; fragment.length < 2187; j++) {
fragment += '9';
}
signatureFragments.push(fragment);
}
} else {
// Else, get single fragment with 2187 of 9's trytes
var fragment = '';
if (transfers[i].message) {
fragment = transfers[i].message.slice(0, 2187)
}
for (var j = 0; fragment.length < 2187; j++) {
fragment += '9';
}
signatureFragments.push(fragment);
}
// get current timestamp in seconds
var timestamp = Math.floor(Date.now() / 1000);
// If no tag defined, get 27 tryte tag.
tag = transfers[i].tag ? transfers[i].tag : '999999999999999999999999999';
// Pad for required 27 tryte length
for (var j = 0; tag.length < 27; j++) {
tag += '9';
}
// Add first entries to the bundle
// Slice the address in case the user provided a checksummed one
bundle.addEntry(signatureMessageLength, transfers[i].address.slice(0, 81), transfers[i].value, tag, timestamp);
// Sum up total value
totalValue += parseInt(transfers[i].value);
}
// Get inputs if we are sending tokens
if (totalValue) {
function createBundle(totalBalance, callback) {
if (totalBalance > 0) {
var toSubtract = 0 - totalBalance;
var timestamp = Math.floor(Date.now() / 1000);
// Add input as bundle entry
// Only a single entry, signatures will be added later
bundle.addEntry(input.securitySum, input.address, toSubtract, tag, timestamp);
}
if (totalValue > totalBalance) {
return callback(new Error("Not enough balance."));
}
// If there is a remainder value
// Add extra output to send remaining funds to
if (totalBalance > totalValue) {
var remainder = totalBalance - totalValue;
// Remainder bundle entry if necessary
if (!remainderAddress) {
return callback(new Error("No remainder address defined"));
}
bundle.addEntry(1, remainderAddress, remainder, tag, timestamp);
}
bundle.finalize();
bundle.addTrytes(signatureFragments);
return callback(null, bundle.bundle);
};
if (input.balance) {
createBundle(input.balance, callback);
} else {
var command = {
'command': 'getBalances',
'addresses': new Array(input.address),
'threshold': 100
}
self._makeRequest.send(command, function(e, balances) {
if (e) return callback(e);
createBundle(parseInt(balances.balances[0]), callback);
});
}
} else {
return callback(new Error("Invalid value transfer: the transfer does not require a signature."));
}
}
/**
* Adds the cosigner signatures to the corresponding bundle transaction
*
* @method addSignature
* @param {array} bundleToSign
* @param {int} cosignerIndex
* @param {string} inputAddress
* @param {string} key
* @param {function} callback
* @returns {array} trytes Returns bundle trytes
**/
Multisig.addSignature = function(bundleToSign, inputAddress, key, callback) {
var bundle = new Bundle();
bundle.bundle = bundleToSign;
// Get the security used for the private key
// 1 security level = 2187 trytes
var security = (key.length / 2187);
// convert private key trytes into trits
var key = Converter.trits(key);
// First get the total number of already signed transactions
// use that for the bundle hash calculation as well as knowing
// where to add the signature
var numSignedTxs = 0;
for (var i = 0; i < bundle.bundle.length; i++) {
if (bundle.bundle[i].address === inputAddress) {
// If transaction is already signed, increase counter
if (!inputValidator.isNinesTrytes(bundle.bundle[i].signatureMessageFragment)) {
numSignedTxs++;
}
// Else sign the transactionse
else {
var bundleHash = bundle.bundle[i].bundle;
// First 6561 trits for the firstFragment
var firstFragment = key.slice(0, 6561);
// Get the normalized bundle hash
var normalizedBundleHash = bundle.normalizedBundle(bundleHash);
var normalizedBundleFragments = [];
// Split hash into 3 fragments
for (var k = 0; k < 3; k++) {
normalizedBundleFragments[k] = normalizedBundleHash.slice(k * 27, (k + 1) * 27);
}
// First bundle fragment uses 27 trytes
var firstBundleFragment = normalizedBundleFragments[numSignedTxs % 3];
// Calculate the new signatureFragment with the first bundle fragment
var firstSignedFragment = Signing.signatureFragment(firstBundleFragment, firstFragment);
// Convert signature to trytes and assign the new signatureFragment
bundle.bundle[i].signatureMessageFragment = Converter.trytes(firstSignedFragment);
for (var j = 1; j < security; j++) {
// Next 6561 trits for the firstFragment
var nextFragment = key.slice(6561 * j, (j + 1) * 6561);
// Use the next 27 trytes
var nextBundleFragment = normalizedBundleFragments[(numSignedTxs + j) % 3];
// Calculate the new signatureFragment with the first bundle fragment
var nextSignedFragment = Signing.signatureFragment(nextBundleFragment, nextFragment);
// Convert signature to trytes and add new bundle entry at i + j position
// Assign the signature fragment
bundle.bundle[i + j].signatureMessageFragment = Converter.trytes(nextSignedFragment);
}
break;
}
}
}
return callback(null, bundle.bundle);
}
module.exports = Multisig;
/***/ }),
/* 52 */
/***/ (function(module, exports, __webpack_require__) {
var ascii = __webpack_require__(23);
var inputValidator = __webpack_require__(12);
/**
* extractJson takes a bundle as input and from the signatureMessageFragments extracts the correct JSON
* data which was encoded and sent with the transaction.
*
* @method extractJson
* @param {array} bundle
* @returns {Object}
**/
function extractJson(bundle) {
// if wrong input return null
if ( !inputValidator.isArray(bundle) || bundle[0] === undefined ) return null;
// Sanity check: if the first tryte pair is not opening bracket, it's not a message
var firstTrytePair = bundle[0].signatureMessageFragment[0] + bundle[0].signatureMessageFragment[1];
if (firstTrytePair !== "OD") return null;
var index = 0;
var notEnded = true;
var trytesChunk = '';
var trytesChecked = 0;
var preliminaryStop = false;
var finalJson = '';
while (index < bundle.length && notEnded) {
var messageChunk = bundle[index].signatureMessageFragment;
// We iterate over the message chunk, reading 9 trytes at a time
for (var i = 0; i < messageChunk.length; i += 9) {
// get 9 trytes
var trytes = messageChunk.slice(i, i + 9);
trytesChunk += trytes;
// Get the upper limit of the tytes that need to be checked
// because we only check 2 trytes at a time, there is sometimes a leftover
var upperLimit = trytesChunk.length - trytesChunk.length % 2;
var trytesToCheck = trytesChunk.slice(trytesChecked, upperLimit);
// We read 2 trytes at a time and check if it equals the closing bracket character
for (var j = 0; j < trytesToCheck.length; j += 2) {
var trytePair = trytesToCheck[j] + trytesToCheck[j + 1];
// If closing bracket char was found, and there are only trailing 9's
// we quit and remove the 9's from the trytesChunk.
if ( preliminaryStop && trytePair === '99' ) {
notEnded = false;
// TODO: Remove the trailing 9's from trytesChunk
//var closingBracket = trytesToCheck.indexOf('QD') + 1;
//trytesChunk = trytesChunk.slice( 0, ( trytesChunk.length - trytesToCheck.length ) + ( closingBracket % 2 === 0 ? closingBracket : closingBracket + 1 ) );
break;
}
finalJson += ascii.fromTrytes(trytePair);
// If tryte pair equals closing bracket char, we set a preliminary stop
// the preliminaryStop is useful when we have a nested JSON object
if (trytePair === "QD") {
preliminaryStop = true;
}
}
if (!notEnded)
break;
trytesChecked += trytesToCheck.length;
}
// If we have not reached the end of the message yet, we continue with the next
// transaction in the bundle
index += 1;
}
// If we did not find any JSON, return null
if (notEnded) {
return null;
} else {
return finalJson;
}
}
module.exports = extractJson;
/***/ }),
/* 53 */
/***/ (function(module, exports, __webpack_require__) {
var Converter = __webpack_require__(2);
var Curl = __webpack_require__(3);
var Kerl = __webpack_require__(5);
var Signing = __webpack_require__(11);
var Utils = __webpack_require__(17);
var inputValidator = __webpack_require__(12);
/**
* Initializes a new multisig address
*
* @method addDigest
* @param {string|array} digest digest trytes
* @return {object} address instance
*
**/
function Address(digests) {
if (!(this instanceof Address)) {
return new Address(digests);
}
// Initialize kerl instance
this._kerl = new Kerl();
this._kerl.initialize();
// Add digests if any
if (digests) {
this.absorb(digests);
}
}
/**
* Absorbs key digests
*
* @method absorb
* @param {string|array} digest digest trytes
* @return {object} address instance
*
**/
Address.prototype.absorb = function (digest) {
// Construct array
var digests = Array.isArray(digest) ? digest : [digest];
// Add digests
for (var i = 0; i < digests.length; i++) {
// Get trits of digest
var digestTrits = Converter.trits(digests[i]);
// Absorb digest
this._kerl.absorb(digestTrits, 0, digestTrits.length);
}
return this;
}
/**
* Finalizes and returns the multisig address in trytes
*
* @method finalize
* @param {string} digest digest trytes, optional
* @return {string} address trytes
*
**/
Address.prototype.finalize = function (digest) {
// Absorb last digest if provided
if (digest) {
this.absorb(digest);
}
// Squeeze the address trits
var addressTrits = [];
this._kerl.squeeze(addressTrits, 0, Curl.HASH_LENGTH);
// Convert trits into trytes and return the address
return Converter.trytes(addressTrits);
}
module.exports = Address;
/***/ }),
/* 54 */
/***/ (function(module, exports, __webpack_require__) {
const IOTACrypto = __webpack_require__(13);
const MAX_USES = __webpack_require__(24).MAX_USES;
const helpers = __webpack_require__(55);
const getLastBranch = __webpack_require__(18).getLastBranch;
const getMinimumBranch = __webpack_require__(18).getMinimumBranch;
const TransferErrors = {
NULL_VALUE: -1,
REMAINDER_INCREASED: 0,
INVALID_TRANSFER_OBJECT: 1,
INSUFFICIENT_FUNDS: 2,
INVALID_TRANSFERS_ARRAY: 3,
INVALID_SIGNATURES: 4,
ADDRESS_OVERUSE: 5,
ADDRESS_NOT_FOUND: 6,
INPUT_UNDEFINED: 7,
INVALID_INPUT: 8,
BALANCE_NOT_PASSED: 9
};
/**
* Prepare transfers object
*
* @method prepare
* @param {array} settlement the settlement addresses for each user
* @param {array} deposits the amount each user can still spend
* @param {number} fromIndex the index of the user used as an input
* @param {destinations} the `{value, address}` destination of the output bundle (excluding remainder)
* @returns {array} transfers
*/
function prepare(settlement, deposits, fromIndex, destinations) {
const total = destinations.reduce((acc, tx) => acc + tx.value, 0);
if(total > deposits[fromIndex]) {
throw new Error(TransferErrors.INSUFFICIENT_FUNDS);
}
const transfer = helpers.deepClone(destinations);
settlement.map((s,i) => {
if(i != fromIndex) {
const current = transfer.find(tx => tx.address == s);
const stake = total * deposits[i] / deposits.filter((e,i) => i != fromIndex).reduce((acc, s) => acc + s, 0);
if(current) {
current.value += stake;
current.obsoleteTag = ''
} else {
transfer.push({ address: s, value: stake, obsoleteTag: ''
})
}
}
})
return transfer.filter(tx => tx.value > 0);
}
/**
* Composes a Transfer
*
* @method compose
* @param {number} balance The total amount of iotas in the channel
* @param {array<number>} deposit the amount of iotas still available to each user to spend from
* @param {array<string>} outputs the accrued outputs through the channel
* @param {array<bundles>} history the leaf bundles
* @param {array<{addy, val}>} transfers the array of outputs for the transfer
* @param {bool} close whether to use the minimum tree or not
* @return {array<bundle>} prepared bundles
*/
function compose(balance, deposit, outputs, root, remainder, history, transfers, close) {
const valueTransfersLength = transfers.filter( transfer => transfer.value < 0 ).length;
if (valueTransfersLength != 0 && valueTransfersLength > deposit.length) {
throw new Error(TransferErrors.INVALID_TRANSFER_OBJECT);
}
const amount = transfers.reduce((a,b) => a + b.value, 0);
const deposits = deposit.reduce((a,b) => a + b, 0);
if( amount > deposits || deposits < 0) {
throw new Error(TransferErrors.INSUFFICIENT_FUNDS);
}
transfers = transfers.map( transfer => {
if (transfer.address in outputs) {
transfer.value += outputs[transfer.address];
}
return transfer;
});
for(const addy in outputs) {
if (!transfers.find(tx => tx.address == addy)) {
transfers.push ({address: addy, value: outputs[addy]});
}
}
const bundles = [];
let multisigs = close ? getMinimumBranch(root) : getLastBranch(root);
if(multisigs[0].bundles.length == MAX_USES) {
console.log("Overused Address: " + JSON.stringify(multisig[0]))
throw new Error(TransferErrors.ADDRESS_OVERUSE);
}
for(let i = 0; i < multisigs.length - 1; i++) {
if(multisigs[i].bundles.find(bundle => bundle.find(tx => tx.value > 0 && tx.address == remainder))) {
multisigs = multisigs.slice(i+1);
} else {
break;
}
}
if(multisigs.length == 0) {
console.log("Overused Address: " + JSON.stringify(multisigs))
throw new Error(TransferErrors.ADDRESS_OVERUSE);
}
multisigs.slice(0,multisigs.length-1).map((multisig, i) => {
const input = {
address: multisig.address,
securitySum: multisig.securitySum,
balance: balance
};
const remainderAddress = remainder.address
const transfers = [{
address: multisigs[i + 1].address,
value: balance,
obsoleteTag: ''
}];
IOTACrypto.multisig.initiateTransfer(
input,
remainder.address,
transfers,
(err, success) => {
bundles.push(success)
}
)
})
const multisig = multisigs[multisigs.length - 1];
const input = {
address: multisig.address,
securitySum: multisig.securitySum,
balance: balance
};
IOTACrypto.multisig.initiateTransfer(
input,
remainder.address,
transfers,
(err, success) => {
bundles.push(success)
}
)
return bundles;
}
/**
* creates transactions to close the channel
*
* @method close
* @param {array} settlement the settlement addresses for each user
* @param {array} deposits the amount each user can still spend
* @returns {array} transfers
*/
function close(settlement, deposits) {
return settlement.filter(tx => tx).map((s, i) => {
return { address: s, value: deposits[i] };
}).filter(tx => tx.value > 0);
}
/**
* Applies Transfers to State
*
* @method apply
* @param {object} state
* @param {array} transfers
*/
function applyTransfers(root, deposit, outputs, remainder, history, transfers) {
console.log("Transfers:" )
console.log(JSON.stringify(transfers))
for (let bundle of transfers) {
for (let transfer of bundle) {
if (transfer.value < 0 ) {
var isValid = IOTACrypto.utils.validateSignatures(bundle, transfer.address)
console.log("ISVALID:" + transfer.address + "->" + isValid)
if (!isValid) {
console.log("INVALID_SIGNATURE: ");
console.log(JSON.stringify(transfer));
throw new Error(TransferErrors.INVALID_SIGNATURES);
}
}
}
}
// if (transfers.filter(transfer =>
// transfer.filter(tx => tx.value < 0)
// .filter(tx => !IOTACrypto.utils.validateSignatures(transfer, tx.address))
// .length != 0).length != 0) {
// throw new Error(TransferErrors.INVALID_SIGNATURES);
// }
let multisigs = getMultisigs(root, transfers);
for (var sig in multisigs) {
if (sig.bundles && sig.bundles.length == 3) {
console.log("Overused Address while applyTransfers: " + JSON.stringify(sig))
throw new Error(TransferErrors.ADDRESS_OVERUSE);
}
}
if(multisigs.length != transfers.length ) {
console.log("Overused Address: " + JSON.stringify(multisig[0]))
throw new Error(TransferErrors.ADDRESS_NOT_FOUND);
}
try {
let diff = getDiff(root, remainder, history, transfers);
let remaining = deposit.reduce((a,b) => a+b, 0);
let total = diff.filter(v => v.value > 0).reduce((acc,tx) => acc + tx.value, 0);
if (total > remaining) {
throw new Error(TransferErrors.INSUFFICIENT_FUNDS);
}
const depositTotal = deposit.reduce((acc, d) => acc + d, 0);
const depositDiff = deposit.map((d) => total * d / depositTotal);
for(const i in deposit) {
deposit[i] -= depositDiff[i];
}
for(let i = 0; i < diff.length; i++) {
if(diff[i].address in outputs) {
outputs[diff[i].address] += diff[i].value;
} else {
outputs[diff[i].address] = diff[i].value;
}
}
transfers.map((transfer, i) => {
multisigs[i].bundles.push(transfer);
});
history.push(transfers[transfers.length - 1]);
} catch (e) {
throw e;
}
}
function getMultisigs(root, transfers) {
let node = root;
let firstTransfer = transfers[0].find(tx => tx.value < 0)
while(node.address != firstTransfer.address && node.children.length != 0) {
node = node.children[node.children.length - 1];
}
if(node.address != firstTransfer.address) {
throw new Error(TransferErrors.ADDRESS_NOT_FOUND);
}
let multisigs = [];
let i = 0;
multisigs.push(node)
while (node.children.length != 0 && ++i < transfers.length) {
node = node.children.find(m => m.address == transfers[i].find(tx => tx.value < 0).address);
if(node.bundles.length == MAX_USES) {
console.log("Overused Address: " + JSON.stringify(node))
throw new Error(TransferErrors.ADDRESS_OVERUSE);
}
if(!node) {
throw new Error(TransferErrors.ADDRESS_NOT_FOUND);
}
multisigs.push(node);
}
return multisigs;
}
/**
*
* @return {[{object}]} signatures
*/
function sign(root, seed, bundles) {
const multisigs = getMultisigs(root, bundles);
return helpers.deepClone(bundles).map((bundle, i) => {
const multisig = multisigs[i];
// multisig has member signingIndex
bundle
.filter(tx => tx.address == multisig.address)
.slice(0,multisig.signingIndex)
.map(tx => {
if(
IOTACrypto
.utils
.inputValidator
.isNinesTrytes(tx.signatureMessageFragment)
) {
tx.signatureMessageFragment =
tx.signatureMessageFragment.replace(/^9/,'A');
}
});
var sigs = []
IOTACrypto.multisig.addSignature(bundle, multisig.address, IOTACrypto.multisig.getKey(seed, multisig.index, multisig.security), (err, suc) => {
sigs = { bundle: bundle[0].bundle,
address: multisig.address,
index: multisig.signingIndex,
signatureFragments: suc
.filter(tx => tx.address == multisig.address)
.map(tx => tx.signatureMessageFragment)
.slice(multisig.signingIndex, multisig.signingIndex + multisig.security)
}
})
return sigs
});
}
/**
* signatures is an array of signatures for this bundle
*/
function appliedSignatures(bundles, signatures) {
return helpers.deepClone(bundles).map((bundle, i) => {
let userSignature = signatures[i];//.find(s => s.bundle == bundle[0].bundle);
if (userSignature) {
let addy = bundle.find(tx => tx.value < 0 ).address;
bundle
.filter(tx => tx.address == addy)
.slice(userSignature.index, userSignature.index + userSignature.signatureFragments.length)
.map((tx,j) => tx.signatureMessageFragment = userSignature.signatureFragments[j]);
// add signature
}
return bundle;
});
}
/**
* Adds signatures to bundles
*
* @param {object} bundle the bundle to add signatures to
* @param {string} address the address for the signatures
* @param {array} signatures a 2d array of signatures for each bundle
*
* example usage:
* bundles.map((bundle, i) =>
* addSignatures(
* bundle,
* bundle.find(tx => tx.value < 0).address,
* signatures[i]
* )
* )
*/
function addSignatures(bundle, address, signatures) {
bundle.filter(tx => tx.address == address).map((tx, i) => {
tx.signatureMessageFragment = signatures[i];
});
}
function getDiff(root, remainder, history, bundles) {
if(!root) {
throw new Error(TransferErrors.NULL_VALUE);
}
if(!remainder) {
throw new Error(TransferErrors.NULL_VALUE);
}
if(!history) {
throw new Error(TransferErrors.NULL_VALUE);
}
if(!bundles) {
throw new Error(TransferErrors.NULL_VALUE);
}
const initialInputTransaction = bundles[0].filter(bundle => bundle.value < 0)[0];
if (!initialInputTransaction) {
throw new Error(TransferErrors.INPUT_UNDEFINED);
}
const multisigs = getMultisigs(root, bundles);
if (bundles.length != multisigs.length) {
throw new Error(TransferErrors.TOO_MANY_BUNDLES);
}
const initialIndex = multisigs.filter(m => m.address == initialInputTransaction.address).map((m,i) => i)[0];
for(let i = initialIndex; i < multisigs.length - 1 && (i - initialIndex) < bundles.length - 1; i++) {
const bundle = bundles[i - initialIndex];
const inputTransaction = bundle.filter(tx => tx.value < 0)[0];
if(!inputTransaction || inputTransaction.address != multisigs[i].address) {
throw new Error(TransferErrors.INVALID_INPUT);
}
// TODO
// Check if entire amount is being passed to next multisig
if(bundle.find(tx => tx.value > 0 && tx.address != multisigs[i + 1].address)) {
throw new Error(TransferErrors.BALANCE_NOT_PASSED);
}
}
let previousTransfer = history.length == 0 ? []: history[history.length - 1];
const lastTransfer = bundles[bundles.length - 1];
const previousRemainder = previousTransfer.filter(tx => tx.address == remainder.address && tx.value > 0).reduce((acc, v) => acc + v.value, 0);
const newRemainder = lastTransfer.filter(tx => tx.address == remainder.address)
.map(tx => tx.value )
.reduce((acc, v) => acc + v, 0)
if(newRemainder.value > previousRemainder.value) {
throw new Error(TransferErrors.REMAINDER_INCREASED);
}
const newCopy = helpers.deepClone(lastTransfer
.filter(tx => tx.value > 0)
.map(tx => Object({address: tx.address, value: tx.value})))
.filter(tx => tx.address !== remainder.address)
for(const tx of previousTransfer.filter(tx => tx.value > 0)) {
const existing = newCopy.find(t => t.address == tx.address);
if(existing) {
existing.value -= tx.value;
} else {
newCopy.push({address: tx.address, value: tx.value});
}
}
const negatives = newCopy.filter(tx => tx.value < 0);
if(negatives.length != 0 ) {
throw new Error(TransferErrors.INVALID_INPUT);
}
var minusRemainder = newCopy.filter(tx => tx.address !== remainder.address)
return minusRemainder;
}
module.exports = {
'prepare' : prepare,
'compose' : compose,
'close' : close,
'getDiff' : getDiff,
'sign' : sign,
'appliedSignatures': appliedSignatures,
'applyTransfers' : applyTransfers,
'TransferErrors' : TransferErrors
}
/***/ }),
/* 55 */
/***/ (function(module, exports) {
function deepClone(from) {
let copy;
if (Object.prototype.toString.call(from) === '[object Object]') {
copy = {};
for(const x in from) {
copy[x] = deepClone(from[x]);
}
}
else if (Array.isArray(from)) {
let i = -1;
copy = [];
while (++i < from.length) {
copy[i] = deepClone(from[i]);
}
}
else {
copy = from;
}
return copy;
}
module.exports = {
deepClone,
};
/***/ })
/******/ ]);
});