mirror of
https://github.com/botastic/SoftGroup.git
synced 2025-10-16 11:45:42 +00:00
Update traning
This commit is contained in:
parent
eced35ab1a
commit
3fe43242b1
31
README.md
31
README.md
@ -29,38 +29,38 @@ Please refer to [installation guide](docs/installation.md).
|
||||
Please refer to [data preparation](dataset/README.md) for preparing the S3DIS and ScanNet v2 dataset.
|
||||
|
||||
## Pretrained models
|
||||
|
||||
|
||||
| Dataset | AP | AP_50 | AP_25 | Bbox AP_50 | Bbox AP_25 | Download |
|
||||
|:----------:|:----:|:-----:|:-----:|:-----:|:-----:|:-------------------------------------------------------------------------------------------:|
|
||||
| S3DIS | 51.4 | 66.5 | 75.4 | - | - | [model](https://drive.google.com/file/d/1RodfMTUC-0YWs47kx8lj-i0jbDyM9PO6/view?usp=sharing) |
|
||||
| ScanNet v2 | 46.0 | 67.6 | 78.9 | 59.4 | 71.6 | [model](https://drive.google.com/file/d/1Gt1JUXXB-sBtAeuot29crAUnBwcXW7rN/view?usp=sharing) |
|
||||
| S3DIS | 51.4 | 66.5 | 75.4 | - | - | [model](https://drive.google.com/file/d/1-f7I6-eIma4OilBON928N6mVcYbhiUFP/view?usp=sharing) |
|
||||
| ScanNet v2 | 46.0 | 67.6 | 78.9 | 59.4 | 71.6 | [model](https://drive.google.com/file/d/1XUNRfred9QAEUY__VdmSgZxGQ7peG5ms/view?usp=sharing) |
|
||||
|
||||
## Training
|
||||
We use the checkpoint of [HAIS](https://github.com/hustvl/HAIS) as pretrained backbone.
|
||||
Download the pretrained HAIS model at [here](https://drive.google.com/file/d/1XGNswNrbjm33SwpemYxVEoK4o46EOazd/view) at put it in ``SoftGroup/`` directory.
|
||||
We use the checkpoint of [HAIS](https://github.com/hustvl/HAIS) as pretrained backbone. **We have already converted the checkpoint to work on ``spconv2.x``**. Download the pretrained HAIS-spconv2 model and put it in ``SoftGroup/`` directory.
|
||||
|
||||
Converted hais checkpoint: [model](https://drive.google.com/file/d/1FABsCUnxfO_VlItAzDYAwurdfcdK-scs/view?usp=sharing)
|
||||
### Training S3DIS dataset
|
||||
The default configs suppose training on 4 GPU. If you use smaller number of GPUs, you should reduce the learning rate linearly.
|
||||
|
||||
First, finetune the pretrained HAIS point-wise prediction network (backbone) on S3DIS.
|
||||
```
|
||||
python train.py --config config/softgroup_fold5_backbone_s3dis.yaml
|
||||
./tools/dist_train.sh config/softgroup_s3dis_backbone_fold5.yaml 4
|
||||
```
|
||||
Then, train model from frozen backbone.
|
||||
```
|
||||
python train.py --config config/softgroup_fold5_default_s3dis.yaml
|
||||
./tools/dist_train.sh config/softgroup_s3dis_fold5.yaml 4
|
||||
```
|
||||
|
||||
### Training ScanNet V2 dataset
|
||||
Training on ScanNet doesnot require finetuning the backbone. Just freeze pretrained backbone and train the model.
|
||||
```
|
||||
python train.py --config config/softgroup_default_scannet.yaml
|
||||
./tools/dist_train.sh --config config/softgroup_scannet.yaml 4
|
||||
```
|
||||
|
||||
## Inference
|
||||
### Testing for S3DIS dataset.
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0 python test_s3dis.py --config config/softgroup_fold5_default_s3dis.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$
|
||||
```
|
||||
### Testing for ScanNet V2 dataset.
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0 python test.py --config config/softgroup_default_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$
|
||||
./tools/dist_test.sh $CONFIG_FILE $CHECKPOINT $NUM_GPU
|
||||
```
|
||||
### Bounding box evaluation of ScanNet V2 dataset.
|
||||
We provide script to evaluate detection performance on axis-aligned boxes from predicted/ground-truth instance.
|
||||
@ -77,11 +77,6 @@ python eval_det.py
|
||||
## Visualization
|
||||
Please refer to [visualization guide](docs/visualization.md) for visualizing ScanNet and S3DIS results.
|
||||
|
||||
## TODO
|
||||
|
||||
- [x] Benchmark on spconv 2.x for better speed. (In progress)
|
||||
- [x] Code refactor (In progress)
|
||||
- [ ] Distributed training
|
||||
|
||||
## Citation
|
||||
If you find our work helpful for your research. Please consider citing our paper.
|
||||
|
||||
Loading…
Reference in New Issue
Block a user