mirror of
https://github.com/botastic/SoftGroup.git
synced 2025-10-16 11:45:42 +00:00
Update README.md
This commit is contained in:
parent
537fd2fdae
commit
9734731509
87
README.md
87
README.md
@ -3,7 +3,7 @@
|
||||
|
||||

|
||||
|
||||
We provide code for reproducing results of the paper [SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022)](https://arxiv.org/abs/2203.01509)
|
||||
We provide code for reproducing results of the paper **SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022)**
|
||||
|
||||
Author: Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, and Chang D. Yoo.
|
||||
|
||||
@ -25,93 +25,12 @@ Existing state-of-the-art 3D instance segmentation methods perform semantic segm
|
||||
|
||||
## Installation
|
||||
|
||||
1\) Environment
|
||||
|
||||
* Python 3.x
|
||||
* Pytorch 1.1 or higher
|
||||
* CUDA 9.2 or higher
|
||||
* gcc-5.4 or higher
|
||||
|
||||
Create a conda virtual environment and activate it.
|
||||
```
|
||||
conda create -n softgroup python=3.7
|
||||
conda activate softgroup
|
||||
```
|
||||
|
||||
|
||||
2\) Clone the repository.
|
||||
```
|
||||
git clone https://github.com/thangvubk/SoftGroup.git --recursive
|
||||
```
|
||||
|
||||
|
||||
3\) Install the requirements.
|
||||
```
|
||||
cd SoftGroup
|
||||
pip install -r requirements.txt
|
||||
conda install -c bioconda google-sparsehash
|
||||
```
|
||||
|
||||
4\) Install spconv
|
||||
|
||||
|
||||
* Install the dependencies.
|
||||
```
|
||||
sudo apt-get install libboost-all-dev
|
||||
sudo apt-get install libsparsehash-dev
|
||||
|
||||
```
|
||||
|
||||
* Compile the spconv library.
|
||||
```
|
||||
cd SoftGroup/lib/spconv
|
||||
python setup.py bdist_wheel
|
||||
pip install dist/{WHEEL_FILE_NAME}.whl
|
||||
```
|
||||
|
||||
|
||||
5\) Compile the external C++ and CUDA ops.
|
||||
```
|
||||
cd SoftGroup/lib/softgroup_ops
|
||||
export CPLUS_INCLUDE_PATH={conda_env_path}/softgroup/include:$CPLUS_INCLUDE_PATH
|
||||
python setup.py build_ext develop
|
||||
```
|
||||
{conda_env_path} is the location of the created conda environment, e.g., `/anaconda3/envs`.
|
||||
Please refer to [installation guide](docs/installation.md).
|
||||
|
||||
|
||||
|
||||
## Data Preparation
|
||||
|
||||
1\) Download the [ScanNet](http://www.scan-net.org/) v2 dataset.
|
||||
|
||||
2\) Put the downloaded ``scans`` and ``scans_test`` folder as follows.
|
||||
|
||||
```
|
||||
SoftGroup
|
||||
├── dataset
|
||||
│ ├── scannetv2
|
||||
│ │ ├── scans
|
||||
│ │ ├── scans_test
|
||||
```
|
||||
|
||||
3\) Split and preprocess data
|
||||
```
|
||||
cd SoftGroup/dataset/scannetv2
|
||||
bash prepare_data.sh
|
||||
```
|
||||
|
||||
The script data into train/val/test folder and preprocess the data. After running the script the scannet dataset structure should look like below.
|
||||
```
|
||||
SoftGroup
|
||||
├── dataset
|
||||
│ ├── scannetv2
|
||||
│ │ ├── scans
|
||||
│ │ ├── scans_test
|
||||
│ │ ├── train
|
||||
│ │ ├── val
|
||||
│ │ ├── test
|
||||
│ │ ├── val_gt
|
||||
```
|
||||
Please refer to [data preparation](dataset/README.md) for preparing the S3DIS and ScanNet v2 dataset.
|
||||
|
||||
## Pretrained models
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user