mirror of
https://github.com/botastic/SoftGroup.git
synced 2025-10-16 11:45:42 +00:00
commit
fc1dcbca82
4
.gitignore
vendored
4
.gitignore
vendored
@ -76,3 +76,7 @@ dataset/s3dis/preprocess
|
||||
dataset/s3dis/val_gt
|
||||
dataset/s3dis/preprocess_sample
|
||||
dataset/s3dis/Stanford3dDataset_v1.2
|
||||
|
||||
dataset/stpls3d/train
|
||||
dataset/stpls3d/val
|
||||
dataset/stpls3d/Synthetic_v3_InstanceSegmentation
|
||||
|
||||
84
configs/softgroup_stpls3d.yaml
Normal file
84
configs/softgroup_stpls3d.yaml
Normal file
@ -0,0 +1,84 @@
|
||||
model:
|
||||
channels: 16
|
||||
num_blocks: 7
|
||||
semantic_classes: 15
|
||||
instance_classes: 14
|
||||
sem2ins_classes: []
|
||||
semantic_only: False
|
||||
semantic_weight: [1.0, 1.0, 44.0, 21.9, 1.8, 25.1, 31.5, 21.8, 24.0, 54.4, 114.4,
|
||||
81.2, 43.6, 9.7, 22.4]
|
||||
ignore_label: -100
|
||||
with_coords: False
|
||||
grouping_cfg:
|
||||
score_thr: 0.2
|
||||
radius: 0.9
|
||||
mean_active: 3
|
||||
class_numpoint_mean: [-1., 10408., 58., 124., 1351., 162., 430., 1090., 451., 26., 43.,
|
||||
61., 39., 109., 1239]
|
||||
npoint_thr: 0.05 # absolute if class_numpoint == -1, relative if class_numpoint != -1
|
||||
ignore_classes: [0]
|
||||
instance_voxel_cfg:
|
||||
scale: 3
|
||||
spatial_shape: 20
|
||||
train_cfg:
|
||||
max_proposal_num: 300
|
||||
pos_iou_thr: 0.5
|
||||
match_low_quality: True
|
||||
min_pos_thr: 0.1
|
||||
test_cfg:
|
||||
x4_split: False
|
||||
cls_score_thr: 0.001
|
||||
mask_score_thr: -0.5
|
||||
min_npoint: 15
|
||||
fixed_modules: []
|
||||
|
||||
data:
|
||||
train:
|
||||
type: 'stpls3d'
|
||||
data_root: 'dataset/stpls3d'
|
||||
prefix: 'train'
|
||||
suffix: '_inst_nostuff.pth'
|
||||
training: True
|
||||
repeat: 4
|
||||
voxel_cfg:
|
||||
scale: 3
|
||||
spatial_shape: [128, 512]
|
||||
max_npoint: 250000
|
||||
min_npoint: 5000
|
||||
test:
|
||||
type: 'stpls3d'
|
||||
data_root: 'dataset/stpls3d'
|
||||
prefix: 'val'
|
||||
suffix: '_inst_nostuff.pth'
|
||||
training: False
|
||||
voxel_cfg:
|
||||
scale: 3
|
||||
spatial_shape: [128, 512]
|
||||
max_npoint: 250000
|
||||
min_npoint: 5000
|
||||
|
||||
dataloader:
|
||||
train:
|
||||
batch_size: 4
|
||||
num_workers: 4
|
||||
test:
|
||||
batch_size: 1
|
||||
num_workers: 1
|
||||
|
||||
optimizer:
|
||||
type: 'Adam'
|
||||
lr: 0.004
|
||||
|
||||
save_cfg:
|
||||
semantic: True
|
||||
offset: True
|
||||
instance: True
|
||||
|
||||
eval_min_npoint: 10
|
||||
|
||||
fp16: False
|
||||
epochs: 108
|
||||
step_epoch: 20
|
||||
save_freq: 4
|
||||
pretrain: './work_dirs/softgroup_stpls3d_backbone/latest.pth'
|
||||
work_dir: ''
|
||||
80
configs/softgroup_stpls3d_backbone.yaml
Normal file
80
configs/softgroup_stpls3d_backbone.yaml
Normal file
@ -0,0 +1,80 @@
|
||||
model:
|
||||
channels: 16
|
||||
num_blocks: 7
|
||||
semantic_classes: 15
|
||||
instance_classes: 14
|
||||
sem2ins_classes: []
|
||||
semantic_only: True
|
||||
semantic_weight: [1.0, 1.0, 44.0, 21.9, 1.8, 25.1, 31.5, 21.8, 24.0, 54.4, 114.4,
|
||||
81.2, 43.6, 9.7, 22.4]
|
||||
with_coords: False
|
||||
ignore_label: -100
|
||||
grouping_cfg:
|
||||
score_thr: 0.2
|
||||
radius: 0.9
|
||||
mean_active: 3
|
||||
class_numpoint_mean: [-1., 10408., 58., 124., 1351., 162., 430., 1090., 451., 26., 43.,
|
||||
61., 39., 109., 1239]
|
||||
npoint_thr: 0.05 # absolute if class_numpoint == -1, relative if class_numpoint != -1
|
||||
ignore_classes: [0]
|
||||
instance_voxel_cfg:
|
||||
scale: 3
|
||||
spatial_shape: 20
|
||||
train_cfg:
|
||||
max_proposal_num: 200
|
||||
pos_iou_thr: 0.5
|
||||
test_cfg:
|
||||
x4_split: False
|
||||
cls_score_thr: 0.001
|
||||
mask_score_thr: -0.5
|
||||
min_npoint: 100
|
||||
fixed_modules: []
|
||||
|
||||
data:
|
||||
train:
|
||||
type: 'stpls3d'
|
||||
data_root: 'dataset/stpls3d'
|
||||
prefix: 'train'
|
||||
suffix: '_inst_nostuff.pth'
|
||||
training: True
|
||||
repeat: 4
|
||||
voxel_cfg:
|
||||
scale: 3
|
||||
spatial_shape: [128, 512]
|
||||
max_npoint: 250000
|
||||
min_npoint: 5000
|
||||
test:
|
||||
type: 'stpls3d'
|
||||
data_root: 'dataset/stpls3d'
|
||||
prefix: 'val'
|
||||
suffix: '_inst_nostuff.pth'
|
||||
training: False
|
||||
voxel_cfg:
|
||||
scale: 3
|
||||
spatial_shape: [128, 512]
|
||||
max_npoint: 250000
|
||||
min_npoint: 5000
|
||||
|
||||
dataloader:
|
||||
train:
|
||||
batch_size: 4
|
||||
num_workers: 4
|
||||
test:
|
||||
batch_size: 1
|
||||
num_workers: 1
|
||||
|
||||
optimizer:
|
||||
type: 'Adam'
|
||||
lr: 0.004
|
||||
|
||||
save_cfg:
|
||||
semantic: True
|
||||
offset: True
|
||||
instance: True
|
||||
|
||||
fp16: False
|
||||
epochs: 20
|
||||
step_epoch: 20
|
||||
save_freq: 4
|
||||
pretrain: ''
|
||||
work_dir: ''
|
||||
3
dataset/stpls3d/prepare_data.sh
Normal file
3
dataset/stpls3d/prepare_data.sh
Normal file
@ -0,0 +1,3 @@
|
||||
#!/bin/bash
|
||||
echo Preprocess data
|
||||
python prepare_data_inst_instance_stpls3d.py
|
||||
170
dataset/stpls3d/prepare_data_inst_instance_stpls3d.py
Normal file
170
dataset/stpls3d/prepare_data_inst_instance_stpls3d.py
Normal file
@ -0,0 +1,170 @@
|
||||
# https://github.com/meidachen/STPLS3D/blob/main/HAIS/data/prepare_data_inst_instance_stpls3d.py
|
||||
import glob
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
|
||||
|
||||
def splitPointCloud(cloud, size=50.0, stride=50):
|
||||
limitMax = np.amax(cloud[:, 0:3], axis=0)
|
||||
width = int(np.ceil((limitMax[0] - size) / stride)) + 1
|
||||
depth = int(np.ceil((limitMax[1] - size) / stride)) + 1
|
||||
cells = [(x * stride, y * stride) for x in range(width) for y in range(depth)]
|
||||
blocks = []
|
||||
for (x, y) in cells:
|
||||
xcond = (cloud[:, 0] <= x + size) & (cloud[:, 0] >= x)
|
||||
ycond = (cloud[:, 1] <= y + size) & (cloud[:, 1] >= y)
|
||||
cond = xcond & ycond
|
||||
block = cloud[cond, :]
|
||||
blocks.append(block)
|
||||
return blocks
|
||||
|
||||
|
||||
def getFiles(files, fileSplit):
|
||||
res = []
|
||||
for filePath in files:
|
||||
name = os.path.basename(filePath)
|
||||
num = name[:2] if name[:2].isdigit() else name[:1]
|
||||
if int(num) in fileSplit:
|
||||
res.append(filePath)
|
||||
return res
|
||||
|
||||
|
||||
def dataAug(file, semanticKeep):
|
||||
points = pd.read_csv(file, header=None).values
|
||||
angle = random.randint(1, 359)
|
||||
angleRadians = math.radians(angle)
|
||||
rotationMatrix = np.array([[math.cos(angleRadians), -math.sin(angleRadians), 0],
|
||||
[math.sin(angleRadians),
|
||||
math.cos(angleRadians), 0], [0, 0, 1]])
|
||||
points[:, :3] = points[:, :3].dot(rotationMatrix)
|
||||
pointsKept = points[np.in1d(points[:, 6], semanticKeep)]
|
||||
return pointsKept
|
||||
|
||||
|
||||
def preparePthFiles(files, split, outPutFolder, AugTimes=0):
|
||||
# save the coordinates so that we can merge the data to a single scene
|
||||
# after segmentation for visualization
|
||||
outJsonPath = os.path.join(outPutFolder, 'coordShift.json')
|
||||
coordShift = {}
|
||||
# used to increase z range if it is smaller than this,
|
||||
# over come the issue where spconv may crash for voxlization.
|
||||
zThreshold = 6
|
||||
|
||||
# Map relevant classes to {1,...,14}, and ignored classes to -100
|
||||
remapper = np.ones(150) * (-100)
|
||||
for i, x in enumerate([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]):
|
||||
remapper[x] = i
|
||||
# Map instance to -100 based on selected semantic
|
||||
# (change a semantic to -100 if you want to ignore it for instance)
|
||||
remapper_disableInstanceBySemantic = np.ones(150) * (-100)
|
||||
for i, x in enumerate([-100, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]):
|
||||
remapper_disableInstanceBySemantic[x] = i
|
||||
|
||||
# only augment data for these classes
|
||||
semanticKeep = [0, 2, 3, 7, 8, 9, 12, 13]
|
||||
|
||||
counter = 0
|
||||
for file in files:
|
||||
|
||||
for AugTime in range(AugTimes + 1):
|
||||
if AugTime == 0:
|
||||
points = pd.read_csv(file, header=None).values
|
||||
else:
|
||||
points = dataAug(file, semanticKeep)
|
||||
name = os.path.basename(file).strip('.txt') + '_%d' % AugTime
|
||||
|
||||
if split != 'test':
|
||||
coordShift['globalShift'] = list(points[:, :3].min(0))
|
||||
points[:, :3] = points[:, :3] - points[:, :3].min(0)
|
||||
|
||||
blocks = splitPointCloud(points, size=50, stride=50)
|
||||
for blockNum, block in enumerate(blocks):
|
||||
if (len(block) > 10000):
|
||||
outFilePath = os.path.join(outPutFolder,
|
||||
name + str(blockNum) + '_inst_nostuff.pth')
|
||||
if (block[:, 2].max(0) - block[:, 2].min(0) < zThreshold):
|
||||
block = np.append(
|
||||
block, [[
|
||||
block[:, 0].mean(0), block[:, 1].mean(0), block[:, 2].max(0) +
|
||||
(zThreshold -
|
||||
(block[:, 2].max(0) - block[:, 2].min(0))), block[:, 3].mean(0),
|
||||
block[:, 4].mean(0), block[:, 5].mean(0), -100, -100
|
||||
]],
|
||||
axis=0)
|
||||
print('range z is smaller than threshold ')
|
||||
print(name + str(blockNum) + '_inst_nostuff')
|
||||
if split != 'test':
|
||||
outFileName = name + str(blockNum) + '_inst_nostuff'
|
||||
coordShift[outFileName] = list(block[:, :3].mean(0))
|
||||
coords = np.ascontiguousarray(block[:, :3] - block[:, :3].mean(0))
|
||||
|
||||
# coords = block[:, :3]
|
||||
colors = np.ascontiguousarray(block[:, 3:6]) / 127.5 - 1
|
||||
|
||||
coords = np.float32(coords)
|
||||
colors = np.float32(colors)
|
||||
if split != 'test':
|
||||
sem_labels = np.ascontiguousarray(block[:, -2])
|
||||
sem_labels = sem_labels.astype(np.int32)
|
||||
sem_labels = remapper[np.array(sem_labels)]
|
||||
|
||||
instance_labels = np.ascontiguousarray(block[:, -1])
|
||||
instance_labels = instance_labels.astype(np.float32)
|
||||
|
||||
disableInstanceBySemantic_labels = np.ascontiguousarray(block[:, -2])
|
||||
disableInstanceBySemantic_labels = disableInstanceBySemantic_labels.astype(
|
||||
np.int32)
|
||||
disableInstanceBySemantic_labels = remapper_disableInstanceBySemantic[
|
||||
np.array(disableInstanceBySemantic_labels)]
|
||||
instance_labels = np.where(disableInstanceBySemantic_labels == -100, -100,
|
||||
instance_labels)
|
||||
|
||||
# map instance from 0.
|
||||
# [1:] because there are -100
|
||||
uniqueInstances = (np.unique(instance_labels))[1:].astype(np.int32)
|
||||
remapper_instance = np.ones(50000) * (-100)
|
||||
for i, j in enumerate(uniqueInstances):
|
||||
remapper_instance[j] = i
|
||||
|
||||
instance_labels = remapper_instance[instance_labels.astype(np.int32)]
|
||||
|
||||
uniqueSemantics = (np.unique(sem_labels))[1:].astype(np.int32)
|
||||
|
||||
if split == 'train' and (len(uniqueInstances) < 10 or
|
||||
(len(uniqueSemantics) >=
|
||||
(len(uniqueInstances) - 2))):
|
||||
print('unique insance: %d' % len(uniqueInstances))
|
||||
print('unique semantic: %d' % len(uniqueSemantics))
|
||||
print()
|
||||
counter += 1
|
||||
else:
|
||||
torch.save((coords, colors, sem_labels, instance_labels), outFilePath)
|
||||
else:
|
||||
torch.save((coords, colors), outFilePath)
|
||||
print('Total skipped file :%d' % counter)
|
||||
json.dump(coordShift, open(outJsonPath, 'w'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
data_folder = 'Synthetic_v3_InstanceSegmentation'
|
||||
filesOri = sorted(glob.glob(data_folder + '/*.txt'))
|
||||
|
||||
trainSplit = [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24]
|
||||
trainFiles = getFiles(filesOri, trainSplit)
|
||||
split = 'train'
|
||||
trainOutDir = split
|
||||
os.makedirs(trainOutDir, exist_ok=True)
|
||||
preparePthFiles(trainFiles, split, trainOutDir, AugTimes=6)
|
||||
|
||||
valSplit = [5, 10, 15, 20, 25]
|
||||
split = 'val'
|
||||
valFiles = getFiles(filesOri, valSplit)
|
||||
valOutDir = split
|
||||
os.makedirs(valOutDir, exist_ok=True)
|
||||
preparePthFiles(valFiles, split, valOutDir)
|
||||
67
dataset/stpls3d/prepare_data_statistic_stpls3d.py
Normal file
67
dataset/stpls3d/prepare_data_statistic_stpls3d.py
Normal file
@ -0,0 +1,67 @@
|
||||
import glob
|
||||
import math
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
data_folder = os.path.join(
|
||||
os.path.dirname(os.getcwd()), 'dataset', 'Synthetic_v3_InstanceSegmentation', 'train')
|
||||
files = sorted(glob.glob(data_folder + '/*.pth'))
|
||||
numclass = 15
|
||||
semanticIDs = []
|
||||
for i in range(numclass):
|
||||
semanticIDs.append(i)
|
||||
|
||||
class_numpoint_mean_dict = {}
|
||||
class_radius_mean = {}
|
||||
for semanticID in semanticIDs:
|
||||
class_numpoint_mean_dict[semanticID] = []
|
||||
class_radius_mean[semanticID] = []
|
||||
num_points_semantic = np.array([0 for i in range(numclass)])
|
||||
|
||||
for file in files:
|
||||
coords, colors, sem_labels, instance_labels = torch.load(file)
|
||||
points = np.concatenate(
|
||||
[coords, colors, sem_labels[:, None].astype(int), instance_labels[:, None].astype(int)],
|
||||
axis=1)
|
||||
for semanticID in semanticIDs:
|
||||
singleSemantic = points[np.where(points[:, 6] == semanticID)]
|
||||
uniqueInstances, counts = np.unique(singleSemantic[:, 7], return_counts=True)
|
||||
for count in counts:
|
||||
class_numpoint_mean_dict[semanticID].append(count)
|
||||
allRadius = []
|
||||
for uniqueInstance in uniqueInstances:
|
||||
eachInstance = singleSemantic[np.where(singleSemantic[:, 7] == uniqueInstance)]
|
||||
radius = (np.max(eachInstance, axis=0) - np.min(eachInstance, axis=0)) / 2
|
||||
radius = math.sqrt(radius[0]**2 + radius[1]**2 + radius[2]**2)
|
||||
class_radius_mean[semanticID].append(radius)
|
||||
|
||||
uniqueSemantic, semanticCount = np.unique(points[:, 6], return_counts=True)
|
||||
uniqueSemanticCount = np.array([0 for i in range(numclass)])
|
||||
uniqueSemantic = uniqueSemantic.astype(int)
|
||||
indexOf100 = np.where(uniqueSemantic == -100)
|
||||
semanticCount = np.delete(semanticCount, indexOf100)
|
||||
uniqueSemantic = np.delete(uniqueSemantic, indexOf100)
|
||||
uniqueSemanticCount[uniqueSemantic] = semanticCount
|
||||
num_points_semantic += uniqueSemanticCount
|
||||
|
||||
class_numpoint_mean_list = []
|
||||
class_radius_mean_list = []
|
||||
for semanticID in semanticIDs:
|
||||
class_numpoint_mean_list.append(
|
||||
sum(class_numpoint_mean_dict[semanticID]) * 1.0 / len(class_numpoint_mean_dict[semanticID]))
|
||||
class_radius_mean_list.append(
|
||||
sum(class_radius_mean[semanticID]) / len(class_radius_mean[semanticID]))
|
||||
|
||||
print('Using the printed list in hierarchical_aggregation.cpp for class_numpoint_mean_dict: ')
|
||||
print([1.0] + [float('{0:0.0f}'.format(i)) for i in class_numpoint_mean_list][1:], sep=',')
|
||||
print('Using the printed list in hierarchical_aggregation.cu for class_radius_mean: ')
|
||||
print([1.0] + [float('{0:0.2f}'.format(i)) for i in class_radius_mean_list][1:], sep='')
|
||||
|
||||
# make ground to 1 the make building to 1
|
||||
maxSemantic = np.max(num_points_semantic)
|
||||
num_points_semantic = maxSemantic / num_points_semantic
|
||||
num_points_semantic = num_points_semantic / num_points_semantic[1]
|
||||
print('Using the printed list in hais_run_stpls3d.yaml for class_weight')
|
||||
print([1.0, 1.0] + [float('{0:0.2f}'.format(i)) for i in num_points_semantic][2:], sep='')
|
||||
@ -3,6 +3,7 @@ from torch.utils.data.distributed import DistributedSampler
|
||||
|
||||
from .s3dis import S3DISDataset
|
||||
from .scannetv2 import ScanNetDataset
|
||||
from .stpls3d import STPLS3DDataset
|
||||
|
||||
__all__ = ['S3DISDataset', 'ScanNetDataset', 'build_dataset']
|
||||
|
||||
@ -16,6 +17,8 @@ def build_dataset(data_cfg, logger):
|
||||
return S3DISDataset(**_data_cfg)
|
||||
elif data_type == 'scannetv2':
|
||||
return ScanNetDataset(**_data_cfg)
|
||||
elif data_type == 'stpls3d':
|
||||
return STPLS3DDataset(**_data_cfg)
|
||||
else:
|
||||
raise ValueError(f'Unknown {data_type}')
|
||||
|
||||
|
||||
@ -132,9 +132,8 @@ class CustomDataset(Dataset):
|
||||
xyz_middle = self.dataAugment(xyz, True, True, True, aug_prob)
|
||||
xyz = xyz_middle * self.voxel_cfg.scale
|
||||
if np.random.rand() < aug_prob:
|
||||
xyz = self.elastic(xyz, 6 * self.voxel_cfg.scale // 50, 40 * self.voxel_cfg.scale / 50)
|
||||
xyz = self.elastic(xyz, 20 * self.voxel_cfg.scale // 50,
|
||||
160 * self.voxel_cfg.scale / 50)
|
||||
xyz = self.elastic(xyz, 6, 40.)
|
||||
xyz = self.elastic(xyz, 20, 160.)
|
||||
# xyz_middle = xyz / self.voxel_cfg.scale
|
||||
xyz = xyz - xyz.min(0)
|
||||
max_tries = 5
|
||||
|
||||
15
softgroup/data/stpls3d.py
Normal file
15
softgroup/data/stpls3d.py
Normal file
@ -0,0 +1,15 @@
|
||||
from .custom import CustomDataset
|
||||
|
||||
|
||||
class STPLS3DDataset(CustomDataset):
|
||||
|
||||
CLASSES = ('building', 'low vegetation', 'med. vegetation', 'high vegetation', 'vehicle',
|
||||
'truck', 'aircraft', 'militaryVehicle', 'bike', 'motorcycle', 'light pole',
|
||||
'street sign', 'clutter', 'fence')
|
||||
|
||||
def getInstanceInfo(self, xyz, instance_label, semantic_label):
|
||||
ret = super().getInstanceInfo(xyz, instance_label, semantic_label)
|
||||
instance_num, instance_pointnum, instance_cls, pt_offset_label = ret
|
||||
# ignore instance of class 0 and reorder class id
|
||||
instance_cls = [x - 1 if x != -100 else x for x in instance_cls]
|
||||
return instance_num, instance_pointnum, instance_cls, pt_offset_label
|
||||
@ -12,7 +12,7 @@ from .instance_eval_util import get_instances
|
||||
|
||||
class ScanNetEval(object):
|
||||
|
||||
def __init__(self, class_labels, iou_type=None, use_label=True):
|
||||
def __init__(self, class_labels, min_npoint=None, iou_type=None, use_label=True):
|
||||
self.valid_class_labels = class_labels
|
||||
self.valid_class_ids = np.arange(len(class_labels)) + 1
|
||||
self.id2label = {}
|
||||
@ -22,7 +22,10 @@ class ScanNetEval(object):
|
||||
self.id2label[self.valid_class_ids[i]] = self.valid_class_labels[i]
|
||||
|
||||
self.ious = np.append(np.arange(0.5, 0.95, 0.05), 0.25)
|
||||
self.min_region_sizes = np.array([100])
|
||||
if min_npoint:
|
||||
self.min_region_sizes = np.array([min_npoint])
|
||||
else:
|
||||
self.min_region_sizes = np.array([100])
|
||||
self.distance_threshes = np.array([float('inf')])
|
||||
self.distance_confs = np.array([-float('inf')])
|
||||
|
||||
|
||||
@ -21,8 +21,10 @@ class SoftGroup(nn.Module):
|
||||
semantic_only=False,
|
||||
semantic_classes=20,
|
||||
instance_classes=18,
|
||||
semantic_weight=None,
|
||||
sem2ins_classes=[],
|
||||
ignore_label=-100,
|
||||
with_coords=True,
|
||||
grouping_cfg=None,
|
||||
instance_voxel_cfg=None,
|
||||
train_cfg=None,
|
||||
@ -34,8 +36,10 @@ class SoftGroup(nn.Module):
|
||||
self.semantic_only = semantic_only
|
||||
self.semantic_classes = semantic_classes
|
||||
self.instance_classes = instance_classes
|
||||
self.semantic_weight = semantic_weight
|
||||
self.sem2ins_classes = sem2ins_classes
|
||||
self.ignore_label = ignore_label
|
||||
self.with_coords = with_coords
|
||||
self.grouping_cfg = grouping_cfg
|
||||
self.instance_voxel_cfg = instance_voxel_cfg
|
||||
self.train_cfg = train_cfg
|
||||
@ -46,9 +50,10 @@ class SoftGroup(nn.Module):
|
||||
norm_fn = functools.partial(nn.BatchNorm1d, eps=1e-4, momentum=0.1)
|
||||
|
||||
# backbone
|
||||
in_channels = 6 if with_coords else 3
|
||||
self.input_conv = spconv.SparseSequential(
|
||||
spconv.SubMConv3d(
|
||||
6, channels, kernel_size=3, padding=1, bias=False, indice_key='subm1'))
|
||||
in_channels, channels, kernel_size=3, padding=1, bias=False, indice_key='subm1'))
|
||||
block_channels = [channels * (i + 1) for i in range(num_blocks)]
|
||||
self.unet = UBlock(block_channels, norm_fn, 2, block, indice_key_id=1)
|
||||
self.output_layer = spconv.SparseSequential(norm_fn(channels), nn.ReLU())
|
||||
@ -103,7 +108,8 @@ class SoftGroup(nn.Module):
|
||||
semantic_labels, instance_labels, instance_pointnum, instance_cls,
|
||||
pt_offset_labels, spatial_shape, batch_size, **kwargs):
|
||||
losses = {}
|
||||
feats = torch.cat((feats, coords_float), 1)
|
||||
if self.with_coords:
|
||||
feats = torch.cat((feats, coords_float), 1)
|
||||
voxel_feats = voxelization(feats, p2v_map)
|
||||
input = spconv.SparseConvTensor(voxel_feats, voxel_coords.int(), spatial_shape, batch_size)
|
||||
semantic_scores, pt_offsets, output_feats = self.forward_backbone(input, v2p_map)
|
||||
@ -140,8 +146,12 @@ class SoftGroup(nn.Module):
|
||||
def point_wise_loss(self, semantic_scores, pt_offsets, semantic_labels, instance_labels,
|
||||
pt_offset_labels):
|
||||
losses = {}
|
||||
if self.semantic_weight:
|
||||
weight = torch.tensor(self.semantic_weight, dtype=torch.float, device='cuda')
|
||||
else:
|
||||
weight = None
|
||||
semantic_loss = F.cross_entropy(
|
||||
semantic_scores, semantic_labels, ignore_index=self.ignore_label)
|
||||
semantic_scores, semantic_labels, weight=weight, ignore_index=self.ignore_label)
|
||||
losses['semantic_loss'] = semantic_loss
|
||||
|
||||
pos_inds = instance_labels != self.ignore_label
|
||||
@ -169,14 +179,30 @@ class SoftGroup(nn.Module):
|
||||
fg_instance_cls = instance_cls[fg_inds]
|
||||
fg_ious_on_cluster = ious_on_cluster[:, fg_inds]
|
||||
|
||||
# assign proposal to gt idx. -1: negative, 0 -> num_gts - 1: positive
|
||||
num_proposals = fg_ious_on_cluster.size(0)
|
||||
num_gts = fg_ious_on_cluster.size(1)
|
||||
assigned_gt_inds = fg_ious_on_cluster.new_full((num_proposals, ), -1, dtype=torch.long)
|
||||
|
||||
# overlap > thr on fg instances are positive samples
|
||||
max_iou, gt_inds = fg_ious_on_cluster.max(1)
|
||||
max_iou, argmax_iou = fg_ious_on_cluster.max(1)
|
||||
pos_inds = max_iou >= self.train_cfg.pos_iou_thr
|
||||
pos_gt_inds = gt_inds[pos_inds]
|
||||
assigned_gt_inds[pos_inds] = argmax_iou[pos_inds]
|
||||
|
||||
# allow low-quality proposals with best iou to be as positive sample
|
||||
# in case pos_iou_thr is too high to achieve
|
||||
match_low_quality = getattr(self.train_cfg, 'match_low_quality', False)
|
||||
min_pos_thr = getattr(self.train_cfg, 'min_pos_thr', 0)
|
||||
if match_low_quality:
|
||||
gt_max_iou, gt_argmax_iou = fg_ious_on_cluster.max(0)
|
||||
for i in range(num_gts):
|
||||
if gt_max_iou[i] >= min_pos_thr:
|
||||
assigned_gt_inds[gt_argmax_iou[i]] = i
|
||||
|
||||
# compute cls loss. follow detection convention: 0 -> K - 1 are fg, K is bg
|
||||
labels = fg_instance_cls.new_full((fg_ious_on_cluster.size(0), ), self.instance_classes)
|
||||
labels[pos_inds] = fg_instance_cls[pos_gt_inds]
|
||||
labels = fg_instance_cls.new_full((num_proposals, ), self.instance_classes)
|
||||
pos_inds = assigned_gt_inds >= 0
|
||||
labels[pos_inds] = fg_instance_cls[assigned_gt_inds[pos_inds]]
|
||||
cls_loss = F.cross_entropy(cls_scores, labels)
|
||||
losses['cls_loss'] = cls_loss
|
||||
|
||||
@ -221,7 +247,8 @@ class SoftGroup(nn.Module):
|
||||
def forward_test(self, batch_idxs, voxel_coords, p2v_map, v2p_map, coords_float, feats,
|
||||
semantic_labels, instance_labels, pt_offset_labels, spatial_shape, batch_size,
|
||||
scan_ids, **kwargs):
|
||||
feats = torch.cat((feats, coords_float), 1)
|
||||
if self.with_coords:
|
||||
feats = torch.cat((feats, coords_float), 1)
|
||||
voxel_feats = voxelization(feats, p2v_map)
|
||||
input = spconv.SparseConvTensor(voxel_feats, voxel_coords.int(), spatial_shape, batch_size)
|
||||
semantic_scores, pt_offsets, output_feats = self.forward_backbone(
|
||||
|
||||
@ -116,7 +116,8 @@ def main():
|
||||
gt_insts.append(res['gt_instances'])
|
||||
if not cfg.model.semantic_only:
|
||||
logger.info('Evaluate instance segmentation')
|
||||
scannet_eval = ScanNetEval(dataset.CLASSES)
|
||||
eval_min_npoint = getattr(cfg, 'eval_min_npoint', None)
|
||||
scannet_eval = ScanNetEval(dataset.CLASSES, eval_min_npoint)
|
||||
scannet_eval.evaluate(pred_insts, gt_insts)
|
||||
logger.info('Evaluate semantic segmentation and offset MAE')
|
||||
ignore_label = cfg.model.ignore_label
|
||||
|
||||
@ -108,7 +108,8 @@ def validate(epoch, model, val_loader, cfg, logger, writer):
|
||||
all_gt_insts.append(res['gt_instances'])
|
||||
if not cfg.model.semantic_only:
|
||||
logger.info('Evaluate instance segmentation')
|
||||
scannet_eval = ScanNetEval(val_set.CLASSES)
|
||||
eval_min_npoint = getattr(cfg, 'eval_min_npoint', None)
|
||||
scannet_eval = ScanNetEval(val_set.CLASSES, eval_min_npoint)
|
||||
eval_res = scannet_eval.evaluate(all_pred_insts, all_gt_insts)
|
||||
writer.add_scalar('val/AP', eval_res['all_ap'], epoch)
|
||||
writer.add_scalar('val/AP_50', eval_res['all_ap_50%'], epoch)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user