SoftGroup/train.py
2022-04-10 02:57:11 +00:00

158 lines
6.4 KiB
Python

import argparse
import datetime
import os
import os.path as osp
import shutil
import time
import torch
import yaml
from munch import Munch
from softgroup.data import build_dataloader, build_dataset
from softgroup.evaluation import ScanNetEval, evaluate_semantic_acc, evaluate_semantic_miou
from softgroup.model import SoftGroup
from softgroup.util import (AverageMeter, build_optimizer, checkpoint_save, cosine_lr_after_step,
get_max_memory, get_root_logger, init_dist, is_multiple, is_power2,
load_checkpoint)
from tensorboardX import SummaryWriter
from torch.nn.parallel import DistributedDataParallel
from tqdm import tqdm
def get_args():
parser = argparse.ArgumentParser('SoftGroup')
parser.add_argument('config', type=str, help='path to config file')
parser.add_argument('--dist', action='store_true', help='run with distributed parallel')
parser.add_argument('--resume', type=str, help='path to resume from')
parser.add_argument('--work_dir', type=str, help='working directory')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
cfg_txt = open(args.config, 'r').read()
cfg = Munch.fromDict(yaml.safe_load(cfg_txt))
if args.dist:
init_dist()
# work_dir & logger
if args.work_dir:
cfg.work_dir = args.work_dir
else:
cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0])
os.makedirs(osp.abspath(cfg.work_dir), exist_ok=True)
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file)
logger.info(f'Config:\n{cfg_txt}')
logger.info(f'Distributed: {args.dist}')
logger.info(f'Mix precision training: {cfg.fp16}')
shutil.copy(args.config, osp.join(cfg.work_dir, osp.basename(args.config)))
writer = SummaryWriter(cfg.work_dir)
# model
model = SoftGroup(**cfg.model).cuda()
if args.dist:
model = DistributedDataParallel(model, device_ids=[torch.cuda.current_device()])
scaler = torch.cuda.amp.GradScaler(enabled=cfg.fp16)
# data
train_set = build_dataset(cfg.data.train, logger)
val_set = build_dataset(cfg.data.test, logger)
train_loader = build_dataloader(
train_set, training=True, dist=args.dist, **cfg.dataloader.train)
val_loader = build_dataloader(val_set, training=False, **cfg.dataloader.test)
# optim
optimizer = build_optimizer(model, cfg.optimizer)
# pretrain, resume
start_epoch = 1
if args.resume:
logger.info(f'Resume from {args.resume}')
start_epoch = load_checkpoint(args.resume, logger, model, optimizer=optimizer)
elif cfg.pretrain:
logger.info(f'Load pretrain from {cfg.pretrain}')
load_checkpoint(cfg.pretrain, logger, model)
# train and val
logger.info('Training')
for epoch in range(start_epoch, cfg.epochs + 1):
model.train()
iter_time = AverageMeter()
data_time = AverageMeter()
meter_dict = {}
end = time.time()
if train_loader.sampler is not None and args.dist:
train_loader.sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader, start=1):
data_time.update(time.time() - end)
cosine_lr_after_step(optimizer, cfg.optimizer.lr, epoch - 1, cfg.step_epoch, cfg.epochs)
with torch.cuda.amp.autocast(enabled=cfg.fp16):
loss, log_vars = model(batch, return_loss=True)
# meter_dict
for k, v in log_vars.items():
if k not in meter_dict.keys():
meter_dict[k] = AverageMeter()
meter_dict[k].update(v[0], v[1])
# backward
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# time and print
current_iter = (epoch - 1) * len(train_loader) + i
max_iter = cfg.epochs * len(train_loader)
remain_iter = max_iter - current_iter
iter_time.update(time.time() - end)
end = time.time()
remain_time = remain_iter * iter_time.avg
remain_time = str(datetime.timedelta(seconds=int(remain_time)))
lr = optimizer.param_groups[0]['lr']
writer.add_scalar('learning_rate', lr, current_iter)
for k, v in meter_dict.items():
writer.add_scalar(k, v.val, current_iter)
if is_multiple(i, 10):
log_str = f'Epoch [{epoch}/{cfg.epochs}][{i}/{len(train_loader)}] '
log_str += f'lr: {lr:.2g}, eta: {remain_time}, mem: {get_max_memory()}, '\
f'data_time: {data_time.val:.2f}, iter_time: {iter_time.val:.2f}'
for k, v in meter_dict.items():
log_str += f', {k}: {v.val:.4f}'
logger.info(log_str)
checkpoint_save(epoch, model, optimizer, cfg.work_dir, cfg.save_freq)
# validation
if is_multiple(epoch, cfg.save_freq) or is_power2(epoch):
all_sem_preds, all_sem_labels, all_pred_insts, all_gt_insts = [], [], [], []
logger.info('Validation')
with torch.no_grad():
model = model.eval()
for batch in tqdm(val_loader, total=len(val_loader)):
ret = model(batch)
all_sem_preds.append(ret['semantic_preds'])
all_sem_labels.append(ret['semantic_labels'])
if not cfg.model.semantic_only:
all_pred_insts.append(ret['pred_instances'])
all_gt_insts.append(ret['gt_instances'])
if not cfg.model.semantic_only:
logger.info('Evaluate instance segmentation')
scannet_eval = ScanNetEval(val_loader.dataset.CLASSES)
scannet_eval.evaluate(all_pred_insts, all_gt_insts)
logger.info('Evaluate semantic segmentation')
miou = evaluate_semantic_miou(all_sem_preds, all_sem_labels, cfg.model.ignore_label,
logger)
acc = evaluate_semantic_acc(all_sem_preds, all_sem_labels, cfg.model.ignore_label,
logger)
writer.add_scalar('mIoU', miou, epoch)
writer.add_scalar('Acc', acc, epoch)
writer.flush()