mirror of
https://github.com/botastic/SoftGroup.git
synced 2025-10-16 11:45:42 +00:00
34 lines
1.5 KiB
Markdown
34 lines
1.5 KiB
Markdown
## Visualization
|
|
|
|
Before visualization, you need to change ``save_semantic``, ``save_pt_offsets``, ``save_instance`` to True in the config file and run the inference to write the output predictions.
|
|
|
|
There are two options for visualization:
|
|
|
|
- Visualization using through a pop-up using open3D (default). Prerequisite: ``pip install open3D==0.8.0``
|
|
|
|
- Write point clouds to ``.ply`` file then use an visualization application such as [MeshLab](https://www.meshlab.net/) to see the results. Just pass the arg ``--out YOUR_FILE.ply`` to enable this option.
|
|
|
|
After inference, run visualization by execute the following command
|
|
|
|
```
|
|
python visualization.py --dataset {} --prediction_path --split {} --scene_name {} --task {} --out {}
|
|
|
|
usage: visualization.py [-h] [--dataset {scannet,s3dis}]
|
|
[--prediction_path PREDICTION_PATH]
|
|
[--data_split DATA_SPLIT] [--room_name ROOM_NAME]
|
|
[--task TASK] [--out OUT]
|
|
|
|
optional arguments:
|
|
--dataset {scannet,s3dis}
|
|
dataset for visualization
|
|
--prediction_path PREDICTION_PATH
|
|
path to the prediction results
|
|
--data_split DATA_SPLIT
|
|
train/val/test for scannet or Area_ID for s3dis
|
|
--room_name ROOM_NAME
|
|
room_name
|
|
--task TASK input / semantic_gt / semantic_pred /
|
|
offset_semantic_pred / instance_gt / instance_pred
|
|
--out OUT output point cloud file in FILE.ply format
|
|
```
|